Nighttime Pothole Detection: A Benchmark
Abstract
:1. Introduction
- We are the first to extensively explore the challenges associated with nighttime pothole detection. We examine how these factors affect the performance of detection algorithms and highlight the need for specialized datasets and advanced techniques tailored to nighttime environments. By shedding light on these issues, our work aims to inspire further research in this direction, ultimately enhancing road safety and maintenance practices in nighttime conditions.
- We present the NPD, a comprehensive benchmark specifically designed for nighttime pothole detection, covering a wide range of environments, including urban roadways and rural trails, and various weather and lighting conditions. The NPD includes 3831 meticulously collected and annotated images of nighttime potholes.
- Based on YOLOv8, we develop a baseline detector by introducing wavelet transform convolution (WTConv) [16] to the original model for better performance.
- We evaluate the performance of the improved WT-YOLOv8 method and eight state-of-the-art object detection methods on the NPD, providing critical insights into their efficacy and adaptability to the unique challenges of nighttime pothole detection. This systematic benchmarking identifies the strengths and weaknesses of these methods in handling variable illumination, glare, shadows, and other nighttime complexities.
2. Related Works
2.1. Traditional Pothole Detection Methods
2.2. Deep Learning Methods for Pothole Detection
3. The Construction of the NPD
3.1. Motivation for Developing the NPD
3.2. Data Collection
3.3. Data Source and Processing
3.4. Data Annotation
- Bounding boxes were drawn as rectangles and strictly aligned with the edges of the potholes.
- Each independent pothole was assigned a corresponding bounding box. If multiple potholes visually merged into one and were indistinguishable, they were treated as a single entity for annotation.
- The focus of annotation was solely on the pothole itself. Even if the pothole was connected to other physical entities, only the pothole part was annotated.
- Small potholes in the image background that resembled the main pothole but were not the primary focus of annotation were ignored.
3.5. Statistical Analysis
4. Baseline Detector for Nighttime Pothole Detection
4.1. WT-YOLOv8
4.2. Wavelet Transform Convolution (WTConv)
5. Evaluation
5.1. Implementation Details
5.2. Evaluation Metrics
5.3. Baseline Methods
5.4. Evaluation Results
5.4.1. Overall Performance
5.4.2. Qualitative Evaluation
5.4.3. Ablation Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Asad, M.H.; Khaliq, S.; Yousaf, M.H.; Ullah, M.O.; Ahmad, A. Pothole Detection Using Deep Learning: A Real-Time and AI-on-the-Edge Perspective. Adv. Civil Eng. 2022, 1, 9221211. [Google Scholar] [CrossRef]
- Ma, N.; Fan, J.; Wang, W.; Wu, J.; Jiang, Y.; Xie, L.; Fan, R. Computer Vision for Road Imaging and Pothole Detection: A State-of-the-Art Review of Systems and Algorithms. arXiv 2022, arXiv:2204.13590. [Google Scholar] [CrossRef]
- Bhavan Kumar, S.B.; Guhan, S.; Manyam Kishore; Santhosh, R.; Alfred Daniel, J. Deep Learning Approach for Pothole Detection—A Systematic Review. In Proceedings of the 2023 Second International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 2–4 March 2023; pp. 1410–1414. [Google Scholar]
- Kim, Y.-M.; Kim, Y.-G.; Son, S.; Lim, S.Y.; Choi, B.-Y.; Choi, D.-H. Review of Recent Automated Pothole-Detection Methods. Appl. Sci. 2022, 12, 5320. [Google Scholar] [CrossRef]
- Pandey, A.K.; Iqbal, R.; Maniak, T.; Karyotis, C.; Akuma, S.; Palade, V. Convolutional neural networks for pothole detection of critical road infrastructure. Comput. Electr. Eng. 2022, 99, 107725. [Google Scholar] [CrossRef]
- Bučko, B.; Lieskovská, E.; Zábovská, K.; Zábovský, M. Computer Vision Based Pothole Detection under Challenging Conditions. Sensors 2022, 22, 8878. [Google Scholar] [CrossRef]
- Lincy, A.; Dhanarajan, D.; Kumar, S.; Gobinath, G. Road Pothole Detection System. In Proceedings of the ITM Web of Conferences, Chapel Hill, NC, USA, 22–26 May 2023. [Google Scholar]
- Zhang, F.; Hamdulla, A. Research on Pothole Detection Method for Intelligent Driving Vehicle. In Proceedings of the 2022 3rd International Conference on Pattern Recognition and Machine Learning (PRML), Chengdu, China, 15–17 July 2022; pp. 124–130. [Google Scholar]
- Chen, X.; Zhang, J.; Chen, J. Road Pothole Detection Based on AlexNet for Autonomous Driving. In Proceedings of the 2023 International Conference on Computers, Information Processing and Advanced Education (CIPAE), Ottawa, ON, Canada, 26–28 August 2023; pp. 414–418. [Google Scholar]
- Bharat, R.; Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.M.; Shehab, M.; Abu Zitar, R. A real-time automatic pothole detection system using convolution neural networks. Appl. Comput. Eng. 2023, 6, 879–886. [Google Scholar] [CrossRef]
- Lieskovská, E.; Jakubec, M.; Bučko, B.; Zábovská, K. Automatic pothole detection. Transp. Res. Procedia 2023, 74, 1164–1170. [Google Scholar] [CrossRef]
- Wang, H.-F.; Zhai, L.; Huang, H.; Guan, L.-M.; Mu, K.-N.; Wang, G.-P. Measurement for cracks at the bottom of bridges based on tethered creeping unmanned aerial vehicle. Autom. Constr. 2020, 119, 103330. [Google Scholar] [CrossRef]
- Chen, H.; Yao, M.; Gu, Q. Pothole Detection Using Location-Aware Convolutional Neural Networks. Int. J. Mach. Learn. Cybern. 2020, 11, 899–911. [Google Scholar] [CrossRef]
- Thompson, E.M.; Ranieri, A.; Biasotti, S.; Chicchon, M.; Sipiran, I.; Pham, M.-K.; Nguyen-Ho, T.-L.; Nguyen, H.-D.; Tran, M.-T. SHREC 2022: Pothole and crack detection in the road pavement using images and RGB-D data. Comput. Graphics 2022, 107, 161–171. [Google Scholar] [CrossRef]
- Arya, D.; Maeda, H.; Ghosh, S.K.; Toshniwal, D.; Sekimoto, Y. RDD2020: An annotated image dataset for automatic road damage detection using deep learning. Data Brief 2021, 36, 107133. [Google Scholar] [CrossRef] [PubMed]
- Finder, S.E.; Amoyal, R.; Treister, E.; Freifeld, O. Wavelet Convolutions for Large Receptive Fields. arXiv 2024, arXiv:2407.05848. [Google Scholar]
- Mei, Q.; Gül, M.; Azim, M.R. Densely connected deep neural network considering connectivity of pixels for automatic crack detection. Autom. Constr. 2020, 110, 103018. [Google Scholar] [CrossRef]
- Peralta-López, J.-E.; Morales-Viscaya, J.-A.; Lázaro-Mata, D.; Villaseñor-Aguilar, M.-J.; Prado-Olivarez, J.; Pérez-Pinal, F.-J.; Padilla-Medina, J.-A.; Martínez-Nolasco, J.-J.; Barranco-Gutiérrez, A.-I. Speed bump and pothole detection using deep neural network with images captured through ZED camera. Appl. Sci. 2023, 13, 8349. [Google Scholar] [CrossRef]
- Huang, Y.-T.; Jahanshahi, M.R.; Shen, F.; Mondal, T.G. Deep learning–based autonomous road condition assessment leveraging inexpensive RGB and depth sensors and heterogeneous data fusion: Pothole detection and quantification. J. Transp. Eng. Part B Pavements 2023, 149, 04023010. [Google Scholar] [CrossRef]
- Babbar, S.; Bedi, J. Real-time traffic, accident, and potholes detection by deep learning techniques: A modern approach for traffic management. Neural Comput. Appl. 2023, 35, 19465–19479. [Google Scholar] [CrossRef]
- Kim, T.; Ryu, S.-K. Review and analysis of pothole detection methods. J. Emerg. Trends Comput. Inf. Sci. 2014, 5, 603–608. [Google Scholar]
- Koch, C.; Brilakis, I. Pothole detection in asphalt pavement images. Adv. Eng. Inform. 2011, 25, 507–515. [Google Scholar] [CrossRef]
- Buza, E.; Omanovic, S.; Huseinovic, A. Pothole detection with image processing and spectral clustering. In Proceedings of the 2nd International Conference on Information Technology and Computer Networks, Qinghai, China, 16–18 June 2013; p. 4853. [Google Scholar]
- Ryu, S.-K.; Kim, T.; Kim, Y.-R. Image-Based Pothole Detection System for ITS Service and Road Management System. Math. Probl. Eng. 2015, 1, 968361. [Google Scholar] [CrossRef]
- Saraswat, D.; Bhattacharya, P.; Verma, A.; Prasad, V.K.; Tanwar, S.; Sharma, G.; Bokoro, P.N.; Sharma, R. Explainable AI for healthcare 5.0: Opportunities and challenges. IEEE Access 2022, 10, 84486–84517. [Google Scholar] [CrossRef]
- Tanwar, S.; Ramani, T.; Tyagi, S. Dimensionality reduction using PCA and SVD in big data: A comparative case study. In Future Internet Technologies and Trends: First International Conference, ICFITT 2017, Surat, India, 31 August–2 September 2017; Proceedings 1; Springer: Cham, Switzerland, 2018; pp. 116–125. [Google Scholar]
- Bhatia, Y.; Rai, R.; Gupta, V.; Aggarwal, N.; Akula, A. Convolutional neural networks based potholes detection using thermal imaging. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 578–588. [Google Scholar]
- Chellaswamy, C.; Saravanan, M.; Kanchana, E.; Shalini, J. Deep learning based pothole detection and reporting system. In Proceedings of the 7th International Conference on Smart Structures and Systems (ICSSS), Chennai, India, 21–24 July 2020; pp. 1–6. [Google Scholar]
- Saisree, C.; Kumaran, U. Pothole detection using deep learning classification method. Procedia Comput. Sci. 2023, 218, 2143–2152. [Google Scholar] [CrossRef]
- Khan, M.; Raza, M.A.; Abbas, G.; Othmen, S.; Yousef, A.; Jumani, T.A. Pothole detection for autonomous vehicles using deep learning: A robust and efficient solution. Front. Built Environ. 2024, 9, 1323792. [Google Scholar] [CrossRef]
- Dhiman, A.; Klette, R. Pothole detection using computer vision and learning. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3536–3550. [Google Scholar] [CrossRef]
- Agrawal, R.; Chhadva, Y.; Addagarla, S.; Chaudhari, S. Road surface classification and subsequent pothole detection using deep learning. In Proceedings of the 2021 2nd International Conference for Emerging Technology (INCET), Belagavi, India, 21–23 May 2021; pp. 1–6. [Google Scholar]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common objects in context. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part V. pp. 740–755. [Google Scholar]
- Chi, L.; Jiang, B.; Mu, Y. Fast fourier convolution. Adv. Neural Inf. Process. Syst. 2020, 33, 4479–4488. [Google Scholar]
- Ding, X.; Zhang, X.; Han, J.; Ding, G. Scaling up your kernels to 31x31: Revisiting large kernel design in cnns. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022), New Orleans, LA, USA, 18–24 June 2022; pp. 11963–11975. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Silver Spring, MD, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar]
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Wang, C.-Y.; Yeh, I.-H.; Liao, H.-Y.M. Yolov9: Learning what you want to learn using programmable gradient information. arXiv 2024, arXiv:2402.13616. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding YOLO series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Chen, S.; Sun, P.; Song, Y.; Luo, P. DiffusionDet: Diffusion model for object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Vancouver, BC, Canada, 17–24 June 2023; pp. 19830–19843. [Google Scholar]
- Lyu, C.; Zhang, W.; Huang, H.; Zhou, Y.; Wang, Y.; Liu, Y.; Zhang, S.; Chen, K. RTMDET: An empirical study of designing real-time object detectors. arXiv 2022, arXiv:2212.07784. [Google Scholar]
- Zhang, H.; Li, F.; Liu, S.; Zhang, L.; Su, H.; Zhu, J.; Ni, L.M.; Shum, H.-Y. DINO: DETR with improved denoising anchor boxes for end-to-end object detection. arXiv 2022, arXiv:2203.03605. [Google Scholar]
Method | Publication | Performance | ||
---|---|---|---|---|
mAP | AP@0.5 | AP@0.75 | ||
WT-YOLOv8 | Ours | 0.585 | 0.918 | 0.637 |
YOLOv5 | —— | 0.568 | 0.906 | 0.599 |
YOLOv7 [38] | CVPR, 2023 | 0.534 | 0.897 | 0.559 |
YOLOv8 | —— | 0.562 | 0.903 | 0.609 |
YOLOv9 [39] | ArXiv, 2024 | 0.541 | 0.894 | 0.564 |
YOLOX [40] | ECCV, 2021 | 0.350 | 0.708 | 0.301 |
DiffusionDet [41] | ICCV, 2023 | 0.496 | 0.855 | 0.528 |
RTMDet [42] | ArXiv, 2022 | 0.552 | 0.903 | 0.586 |
DINO [43] | ICLR, 2023 | 0.505 | 0.873 | 0.533 |
Method | Publication | Performance | ||
---|---|---|---|---|
mAP | AP@0.5 | AP@0.75 | ||
WT-YOLOv8 | Ours | 0.450 | 0.618 | 0.498 |
YOLOv5 | —— | 0.377 | 0.571 | 0.410 |
YOLOv7 [38] | CVPR, 2023 | 0.375 | 0.558 | 0.402 |
YOLOv8 | —— | 0.442 | 0.611 | 0.479 |
YOLOv9 [39] | ArXiv, 2024 | 0.384 | 0.582 | 0.429 |
YOLOX [40] | ECCV, 2021 | 0.327 | 0.503 | 0.348 |
DiffusionDet [41] | ICCV, 2023 | 0.351 | 0.522 | 0.389 |
RTMDet [42] | ArXiv, 2022 | 0.409 | 0.573 | 0.444 |
DINO [43] | ICLR, 2023 | 0.490 | 0.664 | 0.533 |
Level | Wavelet | Performance | ||
---|---|---|---|---|
mAP | AP@0.5 | AP@0.75 | ||
1-level | Haar | 0.581 | 0.920 | 0.630 |
1-level | db1 | 0.585 | 0.918 | 0.637 |
1-level | db2 | 0.580 | 0.917 | 0.636 |
Level | Wavelet | Performance | ||
---|---|---|---|---|
mAP | AP@0.5 | AP@0.75 | ||
1-level | db1 | 0.585 | 0.918 | 0.637 |
2-level | db1 | 0.583 | 0.917 | 0.635 |
3-level | db1 | 0.576 | 0.913 | 0.631 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, M.; Shi, Q.; Zhao, X.; Chen, W.; Wei, W.; Xiao, K.; Yang, Z.; Zhang, H.; Li, S.; Lu, C.; et al. Nighttime Pothole Detection: A Benchmark. Electronics 2024, 13, 3790. https://doi.org/10.3390/electronics13193790
Ling M, Shi Q, Zhao X, Chen W, Wei W, Xiao K, Yang Z, Zhang H, Li S, Lu C, et al. Nighttime Pothole Detection: A Benchmark. Electronics. 2024; 13(19):3790. https://doi.org/10.3390/electronics13193790
Chicago/Turabian StyleLing, Min, Quanjun Shi, Xin Zhao, Wenzheng Chen, Wei Wei, Kai Xiao, Zeyu Yang, Hao Zhang, Shuiwang Li, Chenchen Lu, and et al. 2024. "Nighttime Pothole Detection: A Benchmark" Electronics 13, no. 19: 3790. https://doi.org/10.3390/electronics13193790
APA StyleLing, M., Shi, Q., Zhao, X., Chen, W., Wei, W., Xiao, K., Yang, Z., Zhang, H., Li, S., Lu, C., & Zeng, Y. (2024). Nighttime Pothole Detection: A Benchmark. Electronics, 13(19), 3790. https://doi.org/10.3390/electronics13193790