Direction of Arrival Estimation Based on DNN and CNN
Abstract
:1. Introduction
- (1)
- This structure enables accurate and efficient DOA estimation in scenarios with an ambiguous count of signal sources without the need for re-training when the quantity of sources changes.
- (2)
- The algorithm is tested using multiple samples with a range of signal sources from 1 to 8, where the number of sources in different samples is independent.
- (3)
- Simulation experiments display that this structure maintains stable performance across changes in quantization bits, number of antennas, and signal-to-noise ratio (SNR), making it suitable for low-precision quantization scenarios.
2. Mathematical Formulation
2.1. Received Signal Model
2.2. DNN Structure
2.3. CNN Structure
3. DOA System Model
3.1. Recovery Network
3.2. Classification Network
3.3. Data Processing
4. Simulation Results and Analyses
4.1. Simulation Setup
4.1.1. DNN Framework
4.1.2. CNN Framework
4.2. Simulation Result
4.3. Comparison of Runtimes of Different Methods
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jinde, H.; Hong, L. Estimation of Direction of Arrival(DOA) Based on the Spatial Kurtosis Spectrum. In Proceedings of the 2021 International Conference on Information Science, Parallel and Distributed Systems (ISPDS), Hangzhou, China, 13–15 August 2021; pp. 47–51. [Google Scholar] [CrossRef]
- Rajani, A.; Kora, P. Direction of Arrival Estimation by Using Artificial Neural Networks. In Proceedings of the Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV 2020), Tirunelveli, India, 4–6 February 2021; pp. 1360–1363. [Google Scholar] [CrossRef]
- Fuchs, J.; Gardill, M.; Lübke, M.; Dubey, A.; Lurz, F. A Machine Learning Perspective on Automotive Radar Direction of Arrival Estimation. IEEE Access 2022, 10, 6775–6797. [Google Scholar] [CrossRef]
- Ge, S.; Li, K.; Rum, S.N.B.M. Deep learning approach in DOA estimation: A systematic literature review. Mob. Inf. Syst. 2021, 2021, 6392875. [Google Scholar] [CrossRef]
- Zhao, F.; Hu, G.; Zhan, C.; Zhang, Y. DOA estimation method based on improved deep convolutional neural network. Sensors 2022, 22, 1305. [Google Scholar] [CrossRef]
- Cox, H.; Zeskind, R.; Owen, M. Robust adaptive beamforming. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 1365–1376. [Google Scholar] [CrossRef]
- Elbir, A.M.; Mishra, K.V.; Vorobyov, S.A.; Heath, R.W. Twenty-Five Years of Advances in Beamforming: From convex and nonconvex optimization to learning techniques. IEEE Signal Process. Mag. 2023, 40, 118–131. [Google Scholar] [CrossRef]
- Huang, H.; Peng, Y.; Yang, J.; Xia, W.; Gui, G. Fast beamforming design via deep learning. IEEE Trans. Veh. Technol. 2019, 69, 1065–1069. [Google Scholar] [CrossRef]
- Mucci, R. A comparison of efficient beamforming algorithms. IEEE Trans. Acoust. Speech Signal Process. 1984, 32, 548–558. [Google Scholar] [CrossRef]
- Zhou, C.W.; Gu, Y.J.; Shi, Z.G.; Haardt, M. Structured Nyquist Correlation Reconstruction for DOA Estimation with Sparse Arrays. IEEE Trans. Signal Process. 2023, 71, 1849–1862. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y. Conventional beamforming techniques. In Microphone Array Signal Processing; Springer: Berlin/Heidelberg, Germany, 2008; pp. 39–65. [Google Scholar]
- Peng, J.Y.; Nie, W.H.; Li, T.; Xu, J. An end-to-end DOA estimation method based on deep learning for underwater acoustic array. In Proceedings of the OCEANS Hampton Roads Conference, Hampton Roads, VA, USA, 17–20 October 2022. [Google Scholar]
- Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Roy, R.; Kailath, T. ESPRITestimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. [Google Scholar] [CrossRef]
- Chen, F.; Yang, D.S.; Wu, D.; Gui, C.Y.; Mo, S.Q. A Novel Direction-of-Arrival Estimation Algorithm without Knowing the Source Number. IEEE Commun. Lett. 2021, 25, 985–989. [Google Scholar] [CrossRef]
- Debasis, K. Modified MUSIC algorithm for estimating DOA of signals. Signal Process. 1996, 48, 85–90. [Google Scholar] [CrossRef]
- Pillai, S.U.; Kwon, B.H. Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 8–15. [Google Scholar] [CrossRef]
- Viberg, M.; Ottersten, B.; Kailath, T. Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Trans. Signal Process. 1991, 39, 2436–2449. [Google Scholar] [CrossRef]
- Wax, M.; Kailath, T. Detection of signals by information theoretic criteria. IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 387–392. [Google Scholar] [CrossRef]
- Zhang, Y.; Ng, B.P. MUSIC-Like DOA Estimation Without Estimating the Number of Sources. IEEE Trans. Signal Process. 2010, 58, 1668–1676. [Google Scholar] [CrossRef]
- Pastorino, M.; Randazzo, A. A smart antenna system for direction of arrival estimation based on a support vector regression. IEEE Trans. Antennas Propag. 2005, 53, 2161–2168. [Google Scholar] [CrossRef]
- Hasan, M.I.; Saquib, M. Low Complexity Single Source 2-D DOA Estimation Based on Reduced Dimension SVR. In Proceedings of the 2022 IEEE 22nd Annual Wireless and Microwave Technology Conference (WAMICON), Clearwater, FL, USA, 27–28 April 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Liu, S.B.; Wang, D.Q.; Xing, R.Z.; Ren, J.L.; Lu, W.K. Research on error correction model of surface acoustic wave yarn tension transducer based on DOA-SVR model. Measurement 2024, 226, 114126. [Google Scholar] [CrossRef]
- Randazzo, A.; Abou-Khousa, M.A.; Pastorino, M.; Zoughi, R. Direction of arrival estimation based on support vector regression: Experimental validation and comparison with MUSIC. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 379–382. [Google Scholar] [CrossRef]
- Wajid, M.; Alam, F.; Yadav, S.; Khan, M.A.; Usman, M. Support Vector Regression based Direction of Arrival Estimation of an Acoustic Source. In Proceedings of the 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT), Sakheer, Bahrain, 20–21 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Wu, L.L.; Huang, Z.T. Coherent SVR Learning for Wideband Direction-of-Arrival Estimation. IEEE Signal Process. Lett. 2019, 26, 642–646. [Google Scholar] [CrossRef]
- Liu, Z.M.; Zhang, C.W.; Yu, P.S. Direction-of-Arrival Estimation Based on Deep Neural Networks With Robustness to Array Imperfections. IEEE Trans. Antennas Propag. 2018, 66, 7315–7327. [Google Scholar] [CrossRef]
- Yu, J.R.; Wang, Y.F. Deep Learning-Based Multipath DoAs Estimation Method for mmWave Massive MIMO Systems in Low SNR. IEEE Trans. Veh. Technol. 2023, 72, 7480–7490. [Google Scholar] [CrossRef]
- Wu, L.L.; Liu, Z.M.; Huang, Z.T. Deep Convolution Network for Direction of Arrival Estimation with Sparse Prior. IEEE Signal Process. Lett. 2019, 26, 1688–1692. [Google Scholar] [CrossRef]
- Xiang, H.H.; Chen, B.X.; Yang, T.; Liu, D. Improved De-Multipath Neural Network Models with Self-Paced Feature-to-Feature Learning for DOA Estimation in Multipath Environment. IEEE Trans. Veh. Technol. 2020, 69, 5068–5078. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, J. DoA Estimation based on Deep Learning in Low SNR. In Proceedings of the 2023 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Beijing, China, 14–16 June 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Ge, X.; Hu, X.; Dai, X. DOA Estimation for Coherent Sources Using Deep Learning Method. J. Signal Process. 2019, 35, 1376–1384. [Google Scholar]
- Barthelme, A.; Utschick, W. A Machine Learning Approach to DoA Estimation and Model Order Selection for Antenna Arrays With Subarray Sampling. IEEE Trans. Signal Process. 2021, 69, 3075–3087. [Google Scholar] [CrossRef]
- Kassir, H.A.; Rekanos, I.T.; Lazaridis, P.I.; Yioultsis, T.V.; Kantartzis, N.V.; Antonopoulos, C.S.; Karagiannidis, G.K.; Zaharis, Z.D. DOA Estimation for 6G Communication Systems. In Proceedings of the 2023 12th International Conference on Modern Circuits and Systems Technologies (MOCAST), Athens, Greece, 28–30 June 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Kassir, H.A.; Kantartzis, N.V.; Lazaridis, P.I.; Sarigiannidis, P.; Goudos, S.K.; Christodoulou, C.G.; Zaharis, Z.D. Improving DOA Estimation via an Optimal Deep Residual Neural Network Classifier on Uniform Linear Arrays. IEEE Open J. Antennas Propag. 2024, 5, 460–473. [Google Scholar] [CrossRef]
- Ch, L.D.T.; Nagaraju, L.; Puli, K.K. Classification based DOA estimation using ANN and CNN Models. In Proceedings of the IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Bangalore, India, 12–16 December 2022; pp. 1470–1473. [Google Scholar]
- Hu, J.; Mo, Q.; Liu, Z.; Li, H. Multi-Source Classification: A DOA-Based Deep Learning Approach. In Proceedings of the 2020 International Conference on Computer Engineering and Application (ICCEA), Guangzhou, China, 18–20 March 2020; pp. 463–467. [Google Scholar] [CrossRef]
- Weidman, S. Deep Learning from Scratch: Building with Python from First Principles; O‘Reilly Media: Sebastopol, CA, USA, 2019. [Google Scholar]
- LI, X.; Zhang, L.; Sheng, X.; Wei, X. DOA Estimation without Knowing the Number of Sources. Commun. Technol. 2023, 56, 135139. [Google Scholar]
Neural Layer | Size | Activation Function |
---|---|---|
Input layer | 2M | - |
Hidden layer 1 | 256 | LeakyReLU |
Hidden layer 2 | 1024 | LeakyReLU |
Hidden layer 3 | 256 | LeakyReLU |
Output layer | 2M | Sigmoid |
Neural Layer | Enter Dimension | Output Dimensions |
---|---|---|
Input layer | (None, 32, 2M) | (None, 32, 32) |
Convolutional layer | (None, 32, 32) | (None, 32, 64) |
Pooling layer | (None, 32, 64) | (None, 16, 64) |
Convolutional layer | (None, 16, 64) | (None, 16, 128) |
Pooling layer | (None, 16, 128) | (None, 8, 128) |
Convolutional layer | (None, 8, 128) | (None, 8, 64) |
Pooling layer | (None, 8, 64) | (None, 4, 64) |
Convolutional layer | (None, 4, 64) | (None, 4, 32) |
Pooling layer | (None, 4, 32) | (None, 2, 32) |
Flatten layer | (None, 2, 32) | (None, 64) |
Dense layer | (None, 64) | (None, 320) |
Output layer | (None, 320) | (None, 1800) |
True Angles (°) | Estimated Angle (°) |
---|---|
32.1 | 32.3 |
90.4 | 90.6 |
94.4 | 94.2 |
133.2 | 133.1 |
Algorithm | Antenna Numbers | Computation Time per 100,000 Times (s) |
---|---|---|
DNN-CNN framework | 16 | 11.267 |
32 | 25.304 | |
Deep learning algorithm in [32] | 16 | 3.791 |
32 | 4.976 | |
SSSA algorithm in [39] | 16 | 2306.997 |
32 | 2677.327 | |
Improved MUSIC algorithm in [15] | 16 | 80,206.856 |
32 | 90,758.921 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, W.; Ren, W.; Zhang, Z.; Huang, W.; Zou, J.; Liu, G. Direction of Arrival Estimation Based on DNN and CNN. Electronics 2024, 13, 3866. https://doi.org/10.3390/electronics13193866
Cao W, Ren W, Zhang Z, Huang W, Zou J, Liu G. Direction of Arrival Estimation Based on DNN and CNN. Electronics. 2024; 13(19):3866. https://doi.org/10.3390/electronics13193866
Chicago/Turabian StyleCao, Wu, Wen Ren, Zhenyu Zhang, Weiqiang Huang, Jun Zou, and Guangzu Liu. 2024. "Direction of Arrival Estimation Based on DNN and CNN" Electronics 13, no. 19: 3866. https://doi.org/10.3390/electronics13193866
APA StyleCao, W., Ren, W., Zhang, Z., Huang, W., Zou, J., & Liu, G. (2024). Direction of Arrival Estimation Based on DNN and CNN. Electronics, 13(19), 3866. https://doi.org/10.3390/electronics13193866