Small-Signal Modeling of Grid-Forming Wind Turbines in Active Power and DC Voltage Control Timescale
Abstract
:1. Introduction
2. Control Scheme and Definition of Internal Voltage
2.1. Basic Control Scheme of a GFM-WT
2.2. Definition of Internal Voltage
3. Proposed a GFM-WT Model
3.1. The Original Small-Signal Model of a GFM-WT
3.2. Simplify the GF-WT Small-Signal Model
3.2.1. Replace the Terminal Voltage
3.2.2. Open the Feedback Loops
3.2.3. Simplify the Coupled Circuits
4. Verification of the Proposed GF-WT Model
5. Case Study
5.1. Effect of VSG Parameters
5.2. Effect of Voltage Control Parameters
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Active and reactive power output of GFM VSC | |
Terminal voltage vector | |
Magnitude and phase of the terminal voltage | |
Internal voltage vector | |
Magnitude and phase of the internal voltage | |
Vector representation of the AC source | |
Vector representation and the magnitude of AC current | |
Output angle of the VSG control | |
Filter reactance and capacitance of grid-side VSCs | |
Reactance of the AC transmission line | |
Reactance of the AC source | |
Proportional and integral parameters of the PI controller in d-axis voltage controller | |
Proportional and integral parameters of the PI controller in q-axis voltage controller | |
Inertia and damping parameters of the VSG control |
Subscripts: | |
The subscripts represent the d-axis and q-axis components of the rotation coordinate system | |
0 | The subscript represents the initial values in the steady-state condition |
Superscripts: | |
* | The subscript represents the reference value |
s | The subscript represents the signals in VSG-synchronized reference frame |
Appendix A
Appendix A.1
Appendix A.2
- (1) Steady-state reference values:
- Inspecting power VA, Impedance ,
- Phase current A, Frequency rad/s,
- Effective value of line voltage V.
- (2) Control parameters and operation points:
- VSG control
- voltage loop control ,
- operation points p.u., p.u., p.u., p.u.
References
- Chen, Z.; Guerrero, J.M.; Blaabjerg, F. A Review of the State of the Art of Power Electronics for Wind Turbines. IEEE Trans. Power Electron. 2009, 24, 1859–1875. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Ma, K. Future on Power Electronics for Wind Turbine Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 139–152. [Google Scholar] [CrossRef]
- Liu, P.; Xie, X.; Shair, J. Adaptive Hybrid Grid-Forming and Grid-Following Control of IBRs With Enhanced Small-Signal Stability Under Varying SCRs. IEEE Trans. Power Electron. 2024, 39, 6603–6607. [Google Scholar] [CrossRef]
- Yang, Y.; Li, C.; Cheng, L.; Gao, X.; Xu, J.; Blaabjerg, F. A Generic Power Compensation Control for Grid Forming Virtual Synchronous Generator With Damping Correction Loop. IEEE Trans. Ind. Electron. 2024, 71, 10908–10918. [Google Scholar] [CrossRef]
- Lasseter, R.H.; Chen, Z.; Pattabiraman, D. Grid-Forming Inverters: A Critical Asset for the Power Grid. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 925–935. [Google Scholar] [CrossRef]
- Hu, Y.; Shao, Y.; Yang, R.; Long, X.; Chen, G. A Configurable Virtual Impedance Method for Grid-Connected Virtual Synchronous Generator to Improve the Quality of Output Current. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 1477–1489. [Google Scholar] [CrossRef]
- Baruwa, M.; Fazeli, M. Impact of virtual synchronous machines on low-frequency oscillations in power systems. IEEE Trans. Power Syst. 2020, 36, 1934–1946. [Google Scholar] [CrossRef]
- Saeedian, M.; Sangrody, R.; Shahparasti, M.; Taheri, S.; Pouresmaeil, E. Grid—Following DVI—Based Converter Operating in Weak Grids for Enhancing Frequency Stability. IEEE Trans. Power Deliv. 2022, 37, 338–348. [Google Scholar] [CrossRef]
- Saeedian, M.; Eskandari, B.; Taheri, S.; Hinkkanen, M.; Pouresmaeil, E. A Control Technique Based on Distributed Virtual Inertia for High Penetration of Renewable Energies Under Weak Grid Conditions. IEEE Syst. J. 2021, 15, 1825–1834. [Google Scholar] [CrossRef]
- Guo, J. Impedance Analysis and Stabilization of Virtual Synchronous Generators With Different DC-Link Voltage Controllers Under Weak Grid. IEEE Trans. Power Electron. 2021, 36, 11397–11408. [Google Scholar] [CrossRef]
- do Nascimento, T.F.; Salazar, A.O. Impedance Model Based Dynamic Analysis Applied to VSG-Controlled Converters in AC Microgrids. IEEE Trans. Ind. Appl. 2023, 59, 2720–2730. [Google Scholar] [CrossRef]
- Zou, Z. Modeling and Control of a Two-Bus System with Grid-Forming and Grid-Following Converters. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 7133–7149. [Google Scholar] [CrossRef]
- Shi, K.; Wang, Y.; Sun, Y.; Xu, P.; Gao, F. Frequency-Coupled Impedance Modeling of Virtual Synchronous Generators. IEEE Trans. Power Syst. 2021, 36, 3692–3700. [Google Scholar] [CrossRef]
- Yuan, H.; Yuan, X.; Hu, J. Modeling of Grid-Connected VSCs for Power System Small-Signal Stability Analysis in DC-Link Voltage Control Timescale. IEEE Trans. Power Syst. 2017, 32, 3981–3991. [Google Scholar] [CrossRef]
- Huang, Y.; Zhai, X.; Hu, J.; Liu, D.; Lin, C. Modeling of VSCs Modeling and Stability Analysis of VSC Internal Voltage in DC-Link Voltage Control Timescale. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 6, 16–28. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, D.; Shang, L.; Zhu, G.; Tang, H.; Li, Y. Modeling and Stability Analysis of DC-Link Voltage Control in Multi-VSCs With Integrated to Weak Grid. IEEE Trans. Energy Convers 2017, 32, 1127–1138. [Google Scholar] [CrossRef]
- Zheng, W.; Hu, J.; Chai, L.; Liu, B.; Sang, Z. Interaction quantification of MTDC systems connected with weak AC grids. CSEE J. Power Energy Syst. 2024, 10, 3981–3991. [Google Scholar]
- Zheng, W.; Hu, J.; Yuan, X. Modeling of VSCs Considering Input and Output Active Power Dynamics for Multi-Terminal HVDC Interaction Analysis in DC Voltage Control Timescale. IEEE Trans. Energy Convers. 2019, 34, 2008–2018. [Google Scholar] [CrossRef]
- Qu, Z.; Peng, J.C.-H.; Yang, H.; Srinivasan, D. Modeling and Analysis of Inner Controls Effects on Damping and Synchronizing Torque Components in VSG-Controlled Converter. IEEE Trans. Energy Convers. 2021, 36, 488–499. [Google Scholar] [CrossRef]
- Li, C.; Yang, Y.; Mijatovic, N.; Dragicevic, T. Frequency Stability Assessment of Grid-Forming VSG in Framework of MPME with Feedforward Decoupling Control Strategy. IEEE Trans. Ind. Electron. 2022, 69, 6903–6913. [Google Scholar] [CrossRef]
- Li, C.; Yang, Y.; Cao, Y.; Aleshina, A.; Xu, J.; Blaabjerg, F. Grid Inertia and Damping Support Enabled by Proposed Virtual Inductance Control for Grid-Forming Virtual Synchronous Generator. IEEE Trans. Power Electron. 2023, 38, 294–303. [Google Scholar] [CrossRef]
- Tao, L.; Zha, X.; Tian, Z.; Sun, J. Optimal Virtual Inertia Design for VSG-Based Motor Starting Systems to Improve Motor Loading Capacity. IEEE Trans. Energy Convers. 2022, 37, 1726–1738. [Google Scholar] [CrossRef]
D | 40 | 60 | 80 |
---|---|---|---|
the proposed model | |||
the detailed model | |||
Damping Ratio | Damping Ratio | |||
---|---|---|---|---|
0 | 0.82 | |||
0 | 0.77 | |||
0.05 | 0.60 | |||
0.10 | 0.49 | |||
0.10 | 0.43 | |||
0.11 | 0.38 | |||
0.11 | 0.35 | |||
0.11 | 0.33 |
Damping Ratio | Damping Ratio | |||
---|---|---|---|---|
−0.09 | 0.57 | |||
−0.01 | 0.69 | |||
0.05 | 0.58 | |||
0.08 | 0.52 | |||
0.10 | 0.49 | |||
0.10 | 0.48 | |||
0.11 | 0.46 | |||
0.11 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, K.; Ji, X.; Liu, D.; Zheng, W.; Tian, L.; Chen, S. Small-Signal Modeling of Grid-Forming Wind Turbines in Active Power and DC Voltage Control Timescale. Electronics 2024, 13, 4728. https://doi.org/10.3390/electronics13234728
Jiang K, Ji X, Liu D, Zheng W, Tian L, Chen S. Small-Signal Modeling of Grid-Forming Wind Turbines in Active Power and DC Voltage Control Timescale. Electronics. 2024; 13(23):4728. https://doi.org/10.3390/electronics13234728
Chicago/Turabian StyleJiang, Kezheng, Xiaotong Ji, Dan Liu, Wanning Zheng, Lixing Tian, and Shiwei Chen. 2024. "Small-Signal Modeling of Grid-Forming Wind Turbines in Active Power and DC Voltage Control Timescale" Electronics 13, no. 23: 4728. https://doi.org/10.3390/electronics13234728
APA StyleJiang, K., Ji, X., Liu, D., Zheng, W., Tian, L., & Chen, S. (2024). Small-Signal Modeling of Grid-Forming Wind Turbines in Active Power and DC Voltage Control Timescale. Electronics, 13(23), 4728. https://doi.org/10.3390/electronics13234728