BSP: Branch Splitting for Unsolvable Path Hybrid Fuzzing
Abstract
:1. Introduction
2. Related Work
2.1. Coverage-Based Fuzzing
2.2. Concolic Execution
2.3. Hybrid Fuzzing
2.4. Program Modification
3. Motivation
3.1. Slow Concolic Execution
3.2. Unsolvable Constraints
3.3. Unsolvable and Uncovered Branches
4. Design
4.1. Branch Splitting
Algorithm 1 Branch-splitting automation. |
|
Listing 1. An example of modifying an if statement in a file. |
4.2. Filtering Out False Positives
5. Implementation and Evaluation
- RQ: Can the branch-splitting technique help the hybrid fuzzer cover more code? (Section 5)
BranchSplitting
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stephens, N.; Grosen, J.; Salls, C.; Dutcher, A.; Wang, R.; Corbetta, J.; Shoshitaishvili, Y.; Kruegel, C.; Vigna, G. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In Proceedings of the 2016 Network and Distributed System Security Symposium, San Diego, CA, USA, 21–24 February 2016. [Google Scholar] [CrossRef]
- Yun, I.; Lee, S.; Xu, M.; Jang, Y.; Kim, T. QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In Proceedings of the 27th USENIX Security Symposium (USENIX Security 18), Baltimore, MD, USA, 15–17 August 2018; pp. 745–761. [Google Scholar]
- Zhao, L.; Duan, Y.; Yin, H.; Xuan, J. Send Hardest Problems My Way: Probabilistic Path Prioritization for Hybrid Fuzzing. In Proceedings of the 2019 Network and Distributed System Security Symposium, San Diego, CA, USA, 24–27 February 2019. [Google Scholar] [CrossRef]
- Majumdar, R.; Sen, K. Hybrid Concolic Testing. In Proceedings of the 29th International Conference on Software Engineering (ICSE’07), Minneapolis, MN, USA, 20–26 May 2007; pp. 416–426. [Google Scholar] [CrossRef]
- Jiang, L.; Yuan, H.; Wu, M.; Zhang, L.; Zhang, Y. Evaluating and improving hybrid fuzzing. In Proceedings of the 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), Melbourne, Australia, 14–20 May 2023; IEEE: New York, NY, USA, 2023; pp. 410–422. [Google Scholar]
- Wang, Z.; Ming, J.; Jia, C.; Gao, D. Linear Obfuscation to Combat Symbolic Execution. In Proceedings of the 16th European Symposium on Research in Computer Security(ESORICS 2011), Leuven, Belgium, 12–14 September 2011; pp. 210–226. [Google Scholar]
- Chen, Y.; Ahmadi, M.; Farkhani, R.M.; Wang, B.; Lu, L. MEUZZ: Smart Seed Scheduling for Hybrid Fuzzing. In Proceedings of the 23rd International Symposium on Research in Attacks, Intrusions and Defenses, RAID 2020, San Sebastian, Spain, 14–15 October 2020; Egele, M., Bilge, L., Eds.; USENIX Association: Berkeley, CA, USA, 2020; pp. 77–92. [Google Scholar]
- Kargén, U.; Shahmehri, N. Turning Programs against Each Other: High Coverage Fuzz-Testing Using Binary-Code Mutation and Dynamic Slicing. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, Bergamo, Italy, 30 August–4 September 2015; pp. 782–792. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Z.; Feng, Z.; Lan, Y.; Qin, S.; You, W.; Zou, W.; Payer, M.; Zhang, C. {AIFORE}: Smart Fuzzing Based on Automatic Input Format Reverse Engineering. In Proceedings of the 32nd USENIX Security Symposium (USENIX Security 23), Anaheim, CA, USA, 9–11 August 2023; pp. 4967–4984. [Google Scholar]
- Fioraldi, A.; D’Elia, D.C.; Coppa, E. WEIZZ: Automatic grey-box fuzzing for structured binary formats. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, Seattle, WA, USA, 17–21 July 2020; pp. 1–13. [Google Scholar]
- Cao, S.; He, B.; Sun, X.; Ouyang, Y.; Zhang, C.; Wu, X.; Su, T.; Bo, L.; Li, B.; Ma, C.; et al. Oddfuzz: Discovering java deserialization vulnerabilities via structure-aware directed greybox fuzzing. In Proceedings of the 2023 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 21–25 May 2023; IEEE: New York, NY, USA, 2023; pp. 2726–2743. [Google Scholar]
- Deng, P.; Yang, Z.; Zhang, L.; Yang, G.; Hong, W.; Zhang, Y.; Yang, M. NestFuzz: Enhancing Fuzzing with Comprehensive Understanding of Input Processing Logic. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, Copenhagen, Denmark, 26–30 November 2023; pp. 1272–1286. [Google Scholar]
- Gan, S.; Zhang, C.; Qin, X.; Tu, X.; Li, K.; Pei, Z.; Chen, Z. CollAFL: Path Sensitive Fuzzing. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 21–23 May 2018; pp. 679–696. [Google Scholar] [CrossRef]
- Chen, P.; Chen, H. Angora: Efficient Fuzzing by Principled Search. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 21–23 May 2018; pp. 711–725. [Google Scholar] [CrossRef]
- Nagy, S.; Nguyen-Tuong, A.; Hiser, J.D.; Davidson, J.W.; Hicks, M. Same Coverage, Less Bloat: Accelerating Binary-only Fuzzing with Coverage-preserving Coverage-guided Tracing. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event Republic of Korea, 15–19 November 2021; pp. 351–365. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, W. DSFuzz: Detecting Deep State Bugs with Dependent State Exploration. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, Copenhagen, Denmark, 26–30 November 2023; pp. 1242–1256. [Google Scholar]
- Zalewski, M. American Fuzzy Lop. 2015. Available online: https://lcamtuf.coredump.cx/afl/ (accessed on 15 August 2024).
- Luk, C.K.; Cohn, R.; Muth, R.; Patil, H.; Klauser, A.; Lowney, G.; Wallace, S.; Reddi, V.J.; Hazelwood, K. Pin: Building Customized Program Analysis Tools with Dynamic Instrumentation. SIGPLAN Not. 2005, 40, 190–200. [Google Scholar] [CrossRef]
- Google. Honggfuzz. 2010. Available online: https://honggfuzz.dev/ (accessed on 15 August 2024).
- Schumilo, S.; Aschermann, C.; Abbasi, A.; Wor-ner, S.; Holz, T. Nyx: Greybox Hypervisor Fuzzing Using Fast Snapshots and Affine Types. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Online, 11–13 August 2021; USENIX Association: Berkeley, CA, USA, 2021; pp. 2597–2614. [Google Scholar]
- Google. DynamoRIO. 2014. Available online: https://github.com/DynamoRIO/dynamorio (accessed on 15 August 2024).
- Fratric, I. WinAFL. 2016. Available online: https://github.com/googleprojectzero/winafl (accessed on 15 August 2024).
- Duck, G.J.; Gao, X.; Roychoudhury, A. Binary Rewriting without Control Flow Recovery. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, London, UK, 15–20 June 2020; pp. 151–163. [Google Scholar] [CrossRef]
- Dinesh, S.; Burow, N.; Xu, D.; Payer, M. RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitization. In Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020; pp. 1497–1511. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, M.; Liang, J.; Liu, Z.; Jiang, Y. Zeror: Speed Up Fuzzing with Coverage-sensitive Tracing and Scheduling. In Proceedings of the 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE), Melbourne, Australia, 21 September 2020; pp. 858–870. [Google Scholar]
- Nagy, S.; Hicks, M. Full-Speed Fuzzing: Reducing Fuzzing Overhead through Coverage-Guided Tracing. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 23 May 2019; pp. 787–802. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, X.; Liu, Y.; Zeng, K.; Bao, T.; Wu, D.; Su, P. Not All Coverage Measurements Are Equal: Fuzzing by Coverage Accounting for Input Prioritization. In Proceedings of the Proceedings 2020 Network and Distributed System Security Symposium, San Diego, CA, USA, 23–26 February 2020. [Google Scholar] [CrossRef]
- Lemieux, C.; Sen, K. FairFuzz: A Targeted Mutation Strategy for Increasing Greybox Fuzz Testing Coverage. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, Montpellier, France, 3–7 September 2018; pp. 475–485. [Google Scholar] [CrossRef]
- Yan, S.; Wu, C.; Li, H.; Shao, W.; Jia, C. PathAFL: Path-Coverage Assisted Fuzzing. In Proceedings of the 15th ACM Asia Conference on Computer and Communications Security, Taipei, Taiwan, 5–9 October 2020. [Google Scholar]
- Bohme, M.; Pham, V.T.; Roychoudhury, A. Coverage-Based Greybox Fuzzing as Markov Chain. IEEE Trans. Softw. Eng. 2019, 45, 489–506. [Google Scholar] [CrossRef]
- Yue, T.; Wang, P.; Tang, Y.; Wang, E.; Yu, B.; Lu, K.; Zhou, X. EcoFuzz: Adaptive Energy-Saving Greybox Fuzzing as a Variant of the Adversarial Multi-Armed Bandit. In Proceedings of the 29th USENIX Security Symposium (USENIX Security 20), Anaheim, CA, USA, 9–11 August 2020; USENIX Association: Berkeley, CA, USA, 2020; pp. 2307–2324. [Google Scholar]
- Shoshitaishvili, Y.; Wang, R.; Salls, C.; Stephens, N.; Polino, M.; Dutcher, A.; Grosen, J.; Feng, S.; Hauser, C.; Kruegel, C.; et al. SOK: (State of) The Art of War: Offensive Techniques in Binary Analysis. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016; pp. 138–157. [Google Scholar] [CrossRef]
- Cadar, C.; Dunbar, D.; Engler, D. KLEE: Unassisted and Automatic Generation of High-Coverage Tests for Complex Systems Programs. In Proceedings of the 8th USENIX Conference on Operating Systems Design and Implementation, San Diego, CA, USA, 8–10 December 2008; OSDI’08. pp. 209–224. [Google Scholar]
- Chipounov, V.; Kuznetsov, V.; Candea, G. S2E: A Platform for in-Vivo Multi-Path Analysis of Software Systems. In Proceedings of the Sixteenth International Conference on Architectural Support for Programming Languages and Operating Systems, New York, NY, USA, 5–11 May 2011; ASPLOS XVI. pp. 265–278. [Google Scholar] [CrossRef]
- Ramos, D.A.; Engler, D. Under-Constrained Symbolic Execution: Correctness Checking for Real Code. In Proceedings of the 24th USENIX Conference on Security Symposium, Washington, DC, USA, 12–14 August 2015; SEC’15. pp. 49–64. [Google Scholar]
- Neugschwandtner, M.; Milani Comparetti, P.; Haller, I.; Bos, H. The BORG: Nanoprobing Binaries for Buffer Overreads. In Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, San Antonio, TX, USA, 2–4 March 2015; pp. 87–97. [Google Scholar] [CrossRef]
- Cha, S.K.; Woo, M.; Brumley, D. Program-Adaptive Mutational Fuzzing. In Proceedings of the 2015 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 17–21 May 2015; pp. 725–741. [Google Scholar] [CrossRef]
- Cui, H.; Hu, G.; Wu, J.; Yang, J. Verifying Systems Rules Using Rule-Directed Symbolic Execution. In Proceedings of the Eighteenth International Conference on Architectural Support for Programming Languages and Operating Systems—ASPLOS ’13, Houston, TX, USA, 16–20 March 2013; p. 329. [Google Scholar] [CrossRef]
- Chen, P.; Liu, J.; Chen, H. Matryoshka: Fuzzing Deeply Nested Branches. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, New York, NY, USA, 11–15 November 2019; CCS ’19. pp. 499–513. [Google Scholar] [CrossRef]
- Avgerinos, T.; Rebert, A.; Cha, S.K.; Brumley, D. Enhancing Symbolic Execution with Veritesting. Commun. ACM 2016, 59, 93–100. [Google Scholar] [CrossRef]
- Choi, J.; Jang, J.; Han, C.; Cha, S.K. Grey-Box Concolic Testing on Binary Code. In Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), Montreal, QC, Canada, 25 May 2019; pp. 736–747. [Google Scholar] [CrossRef]
- Haller, I.; Slowinska, A.; Neugschwandtner, M.; Bos, H. Dowsing for Overflows: A Guided Fuzzer to Find Buffer Boundary Violations. In Proceedings of the 22nd USENIX Conference on Security, Washington, DC, USA, 14–16 August 2013; SEC’13. pp. 49–64. [Google Scholar]
- Huang, H.; Yao, P.; Wu, R.; Shi, Q.; Zhang, C. Pangolin: Incremental Hybrid Fuzzing with Polyhedral Path Abstraction. In Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020; pp. 1613–1627. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, L.; Wei, Q.; Zhao, L. Towards Tightly-coupled Hybrid Fuzzing via Excavating Input Specifications. IEEE Trans. Dependable Secur. Comput. 2024, 21, 4801–4814. [Google Scholar] [CrossRef]
- Yin, J.; Li, M.; Li, Y.; Yu, Y.; Lin, B.; Zou, Y.; Liu, Y.; Huo, W.; Xue, J. RSFuzzer: Discovering Deep SMI Handler Vulnerabilities in UEFI Firmware with Hybrid Fuzzing. In Proceedings of the 2023 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 21–25 May 2023; IEEE: New York, NY, USA, 2023; pp. 2155–2169. [Google Scholar]
- Hu, Q.; Chen, W.; Wang, Z.; Lu, S.; Nie, Y.; Li, X.; Kuang, X. BSFuzz: Branch-State Guided Hybrid Fuzzing. Electronics 2023, 12, 4033. [Google Scholar] [CrossRef]
- Mi, X.; Wang, B.; Tang, Y.; Wang, P.; Yu, B. SHFuzz: Selective hybrid fuzzing with branch scheduling based on binary instrumentation. Appl. Sci. 2020, 10, 5449. [Google Scholar] [CrossRef]
- Lin, P.; Wang, P.; Zhou, X.; Xie, W.; Lu, K.; Zhang, G. HyperGo: Probability-based directed hybrid fuzzing. Comput. Secur. 2024, 142, 103851. [Google Scholar] [CrossRef]
- Fang, W.; Yang, X.; Guo, W.; Sun, H.; Li, Q.; Lin, Z. PBFuzz: Potential-aware Branch-oriented Hybrid Fuzzing. In Proceedings of the 2024 4th International Symposium on Computer Technology and Information Science (ISCTIS), Xi’an, China, 12–14 July 2024; IEEE: New York, NY, USA, 2024; pp. 608–614. [Google Scholar]
- Nguyen, M.D.; Bardin, S.; Bonichon, R.; Groz, R.; Lemerre, M. Binary-Level Directed Fuzzing for Use-after-Free Vulnerabilities. In Proceedings of the 23rd International Symposium on Research in Attacks, Intrusions and Defenses, RAID 2020, San Sebastian, Spain, 14–15 October 2020; Egele, M., Bilge, L., Eds.; USENIX Association: Berkeley, CA, USA, 2020; pp. 47–62. [Google Scholar]
- Gao, X.; Duck, G.J.; Roychoudhury, A. Scalable Fuzzing of Program Binaries with E9AFL. In Proceedings of the 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE), Melbourne, Australia, 15–19 November 2021; pp. 1247–1251. [Google Scholar] [CrossRef]
- She, D.; Shah, A.; Jana, S. Effective Seed Scheduling for Fuzzing with Graph Centrality Analysis. In Proceedings of the 2022 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 22–26 May 2022; pp. 2194–2211. [Google Scholar] [CrossRef]
- Lyu, C.; Ji, S.; Zhang, C.; Li, Y.; Lee, W.H.; Song, Y.; Beyah, R. MOPT: Optimized Mutation Scheduling for Fuzzers. In Proceedings of the 28th USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, 14–16 August 2019; Heninger, N., Traynor, P., Eds.; USENIX Association: Berkeley, CA, USA, 2019; pp. 1949–1966. [Google Scholar]
- Pham, V.T.; Böhme, M.; Santosa, A.E.; Căciulescu, A.R.; Roychoudhury, A. Smart Greybox Fuzzing. IEEE Trans. Softw. Eng. 2021, 47, 1980–1997. [Google Scholar] [CrossRef]
- Wang, T.; Wei, T.; Gu, G.; Zou, W. TaintScope: A Checksum-Aware Directed Fuzzing Tool for Automatic Software Vulnerability Detection. In Proceedings of the 2010 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 16–19 May 2010; pp. 497–512. [Google Scholar] [CrossRef]
- Peng, H.; Shoshitaishvili, Y.; Payer, M. T-Fuzz: Fuzzing by Program Transformation. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 697–710. [Google Scholar] [CrossRef]
- Aschermann, C.; Schumilo, S.; Abbasi, A.; Holz, T. Ijon: Exploring Deep State Spaces via Fuzzing. In Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020; pp. 1597–1612. [Google Scholar] [CrossRef]
- Österlund, S.; Razavi, K.; Bos, H.; Giuffrida, C. ParmeSan: Sanitizer-guided Greybox Fuzzing. In Proceedings of the 29th USENIX Security Symposium, USENIX Security 2020, Boston, MA, USA, 12–14 August 2020; Capkun, S., Roesner, F., Eds.; USENIX Association: Berkeley, CA, USA, 2020; pp. 2289–2306. [Google Scholar]
- Huang, H.; Guo, Y.; Shi, Q.; Yao, P.; Wu, R.; Zhang, C. BEACON: Directed Grey-Box Fuzzing with Provable Path Pruning. In Proceedings of the 2022 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 22–26 May 2022; pp. 36–50. [Google Scholar] [CrossRef]
- Bendersky, E. Pycparser. 2010. Available online: https://github.com/eliben/pycparser (accessed on 15 August 2024).
- Microsoft. Z3Prover. Available online: https://github.com/Z3Prover/z3 (accessed on 15 August 2024).
- Li, Y.; Ji, S.; Chen, Y.; Liang, S.; Lee, W.H.; Chen, Y.; Lyu, C.; Wu, C.; Beyah, R.; Cheng, P.; et al. UNIFUZZ: A Holistic and Pragmatic Metrics-Driven Platform for Evaluating Fuzzers. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Online, 11–13 August 2021; USENIX Association: Berkeley, CA, USA, 2021; pp. 2777–2794. [Google Scholar]
Program | AFL [17] | QSYM [2] | Ratio |
---|---|---|---|
readelf | 13,132 | 1177 | 8.96% |
tcpdump | 21,751 | 1165 | 5.36% |
pdfimages | 15,521 | 880 | 5.67% |
pdftops | 16,875 | 865 | 5.13% |
pdftotext | 18,089 | 888 | 4.91% |
pngfix | 3194 | 1912 | 59.86% |
Program | Version | Input Format |
---|---|---|
readelf-a @@ | binutils-2.40 | elf |
tcpdump-e-vv-nr @@ | tcpdump-4.99 | pcap |
pdftotext @@/dev/null | xpdf-4.04 | |
pdfimages @@/dev/null | xpdf-4.04 | |
pdftops @@/dev/null | xpdf-4.04 | |
pngfix @@ | libpng-1.6.40 | png |
Program | Fuzzer | Total Branches | Unsolvable Branches | ||
---|---|---|---|---|---|
Num | Growth | Num | Growth | ||
pdftotext | QSYM | 945 | - | 480 | - |
BSP | 1338 | +41.59% | 712 | +48.33% | |
pdftops | QSYM | 786 | - | 348 | - |
BSP | 1283 | +63.23% | 683 | +96.26% | |
pdfimages | QSYM | 809 | - | 380 | - |
BSP | 1119 | +38.32% | 584 | +53.68% | |
tcpdump | QSYM | 4254 | - | 1016 | - |
BSP | 6570 | +54.44% | 1632 | +60.63% | |
readelf | QSYM | 2302 | - | 299 | - |
BSP | 3115 | +35.32% | 545 | +82.27% | |
pngfix | QSYM | 1438 | - | 547 | - |
BSP | 2027 | +40.96% | 595 | +8.78% | |
Average | QSYM | 1756 | - | 512 | - |
BSP | 2575 | +46.68% | 792 | +54.76% |
Program | Unsolvable and Uncovered |
---|---|
pdftotext | 148 |
pdftops | 90 |
pdfimages | 145 |
tcpdump | 395 |
readelf | 218 |
pngfix | 237 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, C.; Pang, L.; Kuang, X.; Qin, J.; Zang, Y.; Zhao, Q.; Zhang, J. BSP: Branch Splitting for Unsolvable Path Hybrid Fuzzing. Electronics 2024, 13, 4935. https://doi.org/10.3390/electronics13244935
Qian C, Pang L, Kuang X, Qin J, Zang Y, Zhao Q, Zhang J. BSP: Branch Splitting for Unsolvable Path Hybrid Fuzzing. Electronics. 2024; 13(24):4935. https://doi.org/10.3390/electronics13244935
Chicago/Turabian StyleQian, Cheng, Ling Pang, Xiaohui Kuang, Jiuren Qin, Yujie Zang, Qichao Zhao, and Jiapeng Zhang. 2024. "BSP: Branch Splitting for Unsolvable Path Hybrid Fuzzing" Electronics 13, no. 24: 4935. https://doi.org/10.3390/electronics13244935
APA StyleQian, C., Pang, L., Kuang, X., Qin, J., Zang, Y., Zhao, Q., & Zhang, J. (2024). BSP: Branch Splitting for Unsolvable Path Hybrid Fuzzing. Electronics, 13(24), 4935. https://doi.org/10.3390/electronics13244935