Artificial Intelligence and Pediatrics: Synthetic Knowledge Synthesis
Abstract
:1. Introduction
- What is the volume and scope of the research on the use of AI in pediatrics?
- What are the volume and dynamics of the production of the research literature on AI use in pediatrics?
- How is research geographically distributed?
- Which information titles informing the scientific community are the most prolific and enable prospective authors to present their research to the widest audience?
- Which funding bodies sponsoring research on AI in pediatrics are the most prolific?
- What are the most prolific research themes?
- What are the most used AI algorithms and approaches?
- What are the most targeted pediatric diagnoses?
- What are the most used AI applications in pediatrics?
- What are the patterns of international research co-operation?
2. Methods
- Research publications on the topic of interest were extracted from the Scopus bibliographic database using an appropriate search string representing the set research questions.
- A descriptive bibliometric analysis was performed using Scopus’s built-in functionality.
- Author keywords were used as meaningful units of information, and bibliometric mapping was executed using VOSViewer [6]. Next, using an inductive content analysis, the node size, links, and proximity between meaningful units in individual clusters and their borders were analyzed to form categories and identify themes.
- Author keywords were used as meaningful units of information, and VOSViewer was used to analyze their frequencies. A deductive content analysis with the preconceived categories of machine learning algorithm, AI approach, pediatric diagnosis, and application in pediatrics was performed.
- Country names were used as meaningful units of information, and citation density labeled bibliometric mapping was executed using VOSViewer. Next, the overlay color, node size, and links between countries were analyzed to identify country cooperation and the citation density of the various countries’ publications.
TITLE-ABS-KEY((“artificial intelligence” OR “machine learning” OR “deep learning” OR “intelligent system” OR “support vector machine” OR (“decision tree” AND (induction OR heuristic)) OR “random forest” OR “Markov decision process” OR “hidden Markov model” OR “fuzzy logic” OR “k-nearest neighbour” OR “naive Bayes” OR “Bayesian learning” OR “artificial neural network” OR “convolutional neural network” OR “recurrent neural network” OR “generative adversarial network” OR “deep belief network” OR “perceptron” OR “natural language processing” OR “natural language understanding” OR “general language model”) and (pediatrics OR paediatrics))
3. Results and Discussion
3.1. Spatial Distribution of Research
3.1.1. Volume and Dynamics of Research Literature Production
3.1.2. Geographical Distribution of the Research Literature Production
3.1.3. Prolific Source Titles
3.1.4. Most Prolific Funding Bodies
3.2. Content Analysis
3.2.1. Inductive Content Analysis: Most Prolific Research Themes
3.2.2. Deductive Content Analysis of the Most Prolific Machine Learning Algorithms, Approaches, Pediatric Diagnoses, and Applications
3.3. Research Cooperation
3.4. Study Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sugiyama, K.; Hasegawa, Y. Computer Assisted medical Diagnosis System for Inborn Errors of Metabolism. Jpn. J. Med. Electron. Biol. Eng. 1984, 22, 942–943. [Google Scholar]
- Kokol, P.; Kokol, M.; Zagoranski, S. Machine Learning on Small Size Samples: A Synthetic Knowledge Synthesis. Sci. Prog. 2022, 105, 00368504211029777. [Google Scholar] [CrossRef]
- Pritchard, A. Statistical Bibliography or Bibliometrics? J. Doc. 1969, 25, 348–349. [Google Scholar]
- Bellis, N.D. Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics; Scarecrow Press: Lanham, MD, USA, 2009; ISBN 978-0-8108-6713-0. [Google Scholar]
- Ball, R. An Introduction to Bibliometrics; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-08-102150-7. [Google Scholar]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Kyngäs, H. Qualitative Research and Content Analysis. In The Application of Content Analysis in Nursing Science Research; Kyngäs, H., Mikkonen, K., Kääriäinen, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–11. ISBN 978-3-030-30199-6. [Google Scholar]
- Zhu, J.; Liu, W. A Tale of Two Databases: The Use of Web of Science and Scopus in Academic Papers. Scientometrics 2020, 123, 321–335. [Google Scholar] [CrossRef]
- Farooq, U.; Nasir, A.; Khan, K.I. An Assessment of the Quality of the Search Strategy: A Case of Bibliometric Studies Published in Business and Economics. Scientometrics 2023, 128, 4855–4874. [Google Scholar] [CrossRef]
- Lee, H. Paging Dr. Watson: IBM’s Watson Supercomputer Now Being Used in Healthcare. J. AHIMA 2014, 85, 44–47. [Google Scholar]
- Liang, Z.; Zhang, G.; Huang, J.X.; Hu, Q.V. Deep Learning for Healthcare Decision Making with EMRs. In Proceedings of the 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Belfast, UK, 2–5 November 2014; pp. 556–559. [Google Scholar]
- Liu, W.; Ni, R.; Hu, G. Web of Science Core Collection’s Coverage Expansion: The Forgotten Arts & Humanities Citation Index? Scientometrics 2024. [Google Scholar] [CrossRef]
- List of Healthiest Kids from These Countries in the World 2023. Available online: https://www.jagranjosh.com/general-knowledge/which-countries-have-the-healthiest-kids-1698217870-1 (accessed on 20 December 2023).
- Kokol, P.; Železnik, D.; Završnik, J.; Blažun Vošner, H. Nursing Research Literature Production in Terms of the Scope of Country and Health Determinants: A Bibliometric Study. J. Nurs. Scholarsh. 2019, 51, 590–598. [Google Scholar] [CrossRef]
- Brady, S.L.; Trout, A.T.; Somasundaram, E.; Anton, C.G.; Li, Y.; Dillman, J.R. Improving Image Quality and Reducing Radiation Dose for Pediatric CT by Using Deep Learning Reconstruction. Radiology 2021, 298, 180–188. [Google Scholar] [CrossRef]
- Wang, Y.-R.J.; Baratto, L.; Hawk, K.E.; Theruvath, A.J.; Pribnow, A.; Thakor, A.S.; Gatidis, S.; Lu, R.; Gummidipundi, S.E.; Garcia-Diaz, J.; et al. Artificial Intelligence Enables Whole-Body Positron Emission Tomography Scans with Minimal Radiation Exposure. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2771–2781. [Google Scholar] [CrossRef]
- Koetzier, L.R.; Mastrodicasa, D.; Szczykutowicz, T.P.; van der Werf, N.R.; Wang, A.S.; Sandfort, V.; van der Molen, A.J.; Fleischmann, D.; Willemink, M.J. Deep Learning Image Reconstruction for CT: Technical Principles and Clinical Prospects. Radiology 2023, 306, e221257. [Google Scholar] [CrossRef]
- Dupuis, M.; Delbos, L.; Veil, R.; Adamsbaum, C. External Validation of a Commercially Available Deep Learning Algorithm for Fracture Detection in Children. Diagn. Interv. Imaging 2022, 103, 151–159. [Google Scholar] [CrossRef]
- Peng, J.; Kim, D.D.; Patel, J.B.; Zeng, X.; Huang, J.; Chang, K.; Xun, X.; Zhang, C.; Sollee, J.; Wu, J.; et al. Deep Learning-Based Automatic Tumor Burden Assessment of Pediatric High-Grade Gliomas, Medulloblastomas, and Other Leptomeningeal Seeding Tumors. Neuro-Oncology 2022, 24, 289–299. [Google Scholar] [CrossRef]
- Usman, M.; Zia, T.; Tariq, A. Analyzing Transfer Learning of Vision Transformers for Interpreting Chest Radiography. J. Digit. Imaging 2022, 35, 1445–1462. [Google Scholar] [CrossRef] [PubMed]
- Salim, I.; Hamza, A.B. Ridge Regression Neural Network for Pediatric Bone Age Assessment. Multimed. Tools Appl. 2021, 80, 30461–30478. [Google Scholar] [CrossRef]
- Liu, C.; Xie, H.; Zhang, Y. Self-Supervised Attention Mechanism for Pediatric Bone Age Assessment with Efficient Weak Annotation. IEEE Trans. Med. Imaging 2021, 40, 2685–2697. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, C.; Gedik, M.A.; Kaya, Y. Age Estimation from Left-Hand Radiographs with Deep Learning Methods. Trait. Du Signal 2021, 38, 1565–1574. [Google Scholar] [CrossRef]
- Deshmukh, S.; Khaparde, A. Faster Region-Convolutional Neural Network Oriented Feature Learning with Optimal Trained Recurrent Neural Network for Bone Age Assessment for Pediatrics. Biomed. Signal Process. Control. 2022, 71, 103016. [Google Scholar] [CrossRef]
- Salehi, M.; Mohammadi, R.; Ghaffari, H.; Sadighi, N.; Reiazi, R. Automated Detection of Pneumonia Cases Using Deep Transfer Learning with Paediatric Chest X-Ray Images. Br. J. Radiol. 2021, 94, 20201263. [Google Scholar] [CrossRef]
- Fernandes, V.; Junior, G.B.; de Paiva, A.C.; Silva, A.C.; Gattass, M. Bayesian Convolutional Neural Network Estimation for Pediatric Pneumonia Detection and Diagnosis. Comput. Methods Programs Biomed. 2021, 208, 106259. [Google Scholar] [CrossRef]
- Fang, X.; Li, W.; Huang, J.; Li, W.; Feng, Q.; Han, Y.; Ding, X.; Zhang, J. Ultrasound Image Intelligent Diagnosis in Community-Acquired Pneumonia of Children Using Convolutional Neural Network-Based Transfer Learning. Front. Pediatr. 2022, 10, 1063587. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.; Inai, K.; Sugiyama, H.; Muragaki, Y. Diagnosing Atrial Septal Defect from Electrocardiogram with Deep Learning. Pediatr. Cardiol. 2021, 42, 1379–1387. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, T.; Berhane, H.; Scott, M.B.; Englund, E.K.; Schäfer, M.; Fonseca, B.; Berthusen, A.; Robinson, J.D.; Rigsby, C.K.; Browne, L.P.; et al. Segmentation of the Aorta and Pulmonary Arteries Based on 4D Flow MRI in the Pediatric Setting Using Fully Automated Multi-Site, Multi-Vendor, and Multi-Label Dense U-Net. J. Magn. Reson. Imaging 2022, 55, 1666–1680. [Google Scholar] [CrossRef]
- Edwards, L.A.; Feng, F.; Iqbal, M.; Fu, Y.; Sanyahumbi, A.; Hao, S.; McElhinney, D.B.; Ling, X.B.; Sable, C.; Luo, J. Machine Learning for Pediatric Echocardiographic Mitral Regurgitation Detection. J. Am. Soc. Echocardiogr. 2023, 36, 96–104.e4. [Google Scholar] [CrossRef]
- Ye, J. Pediatric Mental and Behavioral Health in the Period of Quarantine and Social Distancing with COVID-19. JMIR Pediatr. Parent. 2020, 3, e19867. [Google Scholar] [CrossRef]
- Marcinkevics, R.; Reis Wolfertstetter, P.; Wellmann, S.; Knorr, C.; Vogt, J.E. Using Machine Learning to Predict the Diagnosis, Management and Severity of Pediatric Appendicitis. Front. Pediatr. 2021, 9, 360. [Google Scholar] [CrossRef]
- Castiñeira, D.; Schlosser, K.R.; Geva, A.; Rahmani, A.R.; Fiore, G.; Walsh, B.K.; Smallwood, C.D.; Arnold, J.H.; Santillana, M. Adding Continuous Vital Sign Information to Static Clinical Data Improves the Prediction of Length of Stay after Intubation: A Data-Driven Machine Learning Approach. Respir. Care 2020, 65, 1367–1377. [Google Scholar] [CrossRef]
- Roquette, B.P.; Nagano, H.; Marujo, E.C.; Maiorano, A.C. Prediction of Admission in Pediatric Emergency Department with Deep Neural Networks and Triage Textual Data. Neural Netw. 2020, 126, 170–177. [Google Scholar] [CrossRef]
- Singh, D.; Nagaraj, S.; Mashouri, P.; Drysdale, E.; Fischer, J.; Goldenberg, A.; Brudno, M. Assessment of Machine Learning-Based Medical Directives to Expedite Care in Pediatric Emergency Medicine. JAMA Netw. Open 2022, 5, e222599. [Google Scholar] [CrossRef] [PubMed]
- Gabryszewski, S.J.; Chang, X.; Dudley, J.W.; Mentch, F.; March, M.; Holmes, J.H.; Moore, J.; Grundmeier, R.W.; Hakonarson, H.; Hill, D.A. Unsupervised Modeling and Genome-Wide Association Identify Novel Features of Allergic March Trajectories. J. Allergy Clin. Immunol. 2021, 147, 677–685.e10. [Google Scholar] [CrossRef] [PubMed]
- Jeddi, Z.; Gryech, I.; Ghogho, M.; Hammoumi, M.E.L.; Mahraoui, C. Machine Learning for Predicting the Risk for Childhood Asthma Using Prenatal, Perinatal, Postnatal and Environmental Factors. Healthcare 2021, 9, 1464. [Google Scholar] [CrossRef] [PubMed]
- Amrulloh, Y.; Abeyratne, U.; Swarnkar, V.; Triasih, R. Cough Sound Analysis for Pneumonia and Asthma Classification in Pediatric Population. In Proceedings of the 2015 6th International Conference on Intelligent Systems, Modelling and Simulation, Kuala Lumpur, Malaysia, 9–12 February 2015; pp. 127–131. [Google Scholar]
- Rashid, A.; Anwary, A.R.; Al-Obeidat, F.; Brierley, J.; Uddin, M.; Alkhzaimi, H.; Sarpal, A.; Toufiq, M.; Malik, Z.A.; Kadwa, R.; et al. Application of a Gene Modular Approach for Clinical Phenotype Genotype Association and Sepsis Prediction Using Machine Learning in Meningococcal Sepsis. Inform. Med. Unlocked 2023, 41, 101293. [Google Scholar] [CrossRef]
- Garcelon, N.; Burgun, A.; Salomon, R.; Neuraz, A. Electronic Health Records for the Diagnosis of Rare Diseases. Kidney Int. 2020, 97, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Colmenarejo, G. Machine Learning Models to Predict Childhood and Adolescent Obesity: A Review. Nutrients 2020, 12, 2466. [Google Scholar] [CrossRef]
- Kanbar, L.J.; Wissel, B.; Ni, Y.; Pajor, N.; Glauser, T.; Pestian, J.; Dexheimer, J.W. Implementation of Machine Learning Pipelines for Clinical Practice: Development and Validation Study. JMIR Med. Inform. 2022, 10, e37833. [Google Scholar] [CrossRef] [PubMed]
- Lanera, C.; Baldi, I.; Francavilla, A.; Barbieri, E.; Tramontan, L.; Scamarcia, A.; Cantarutti, L.; Giaquinto, C.; Gregori, D. A Deep Learning Approach to Estimate the Incidence of Infectious Disease Cases for Routinely Collected Ambulatory Records: The Example of Varicella-Zoster. Int. J. Environ. Res. Public Health 2022, 19, 5959. [Google Scholar] [CrossRef] [PubMed]
- Chafjiri, F.M.A.; Reece, L.; Voke, L.; Landschaft, A.; Clark, J.; Kimia, A.A.; Loddenkemper, T. Natural Language Processing for Identification of Refractory Status Epilepticus in Children. Epilepsia 2023, 64, 3227–3237. [Google Scholar] [CrossRef]
- Major, A.; Cox, S.M.; Volchenboum, S.L. Using Big Data in Pediatric Oncology: Current Applications and Future Directions. Semin. Oncol. 2020, 47, 56–64. [Google Scholar] [CrossRef]
- Langenberg, K.P.S.; Looze, E.J.; Molenaar, J.J. The Landscape of Pediatric Precision Oncology: Program Design, Actionable Alterations, and Clinical Trial Development. Cancers 2021, 13, 4324. [Google Scholar] [CrossRef]
- Jawahar, M.; Sharen, H.; Gandomi, A.H. ALNett: A Cluster Layer Deep Convolutional Neural Network for Acute Lymphoblastic Leukemia Classification. Comput. Biol. Med. 2022, 148, 105894. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Malviya, R.; Dahiya, S. Risk Assessment in the Field of Oncology Using Big Data. In Big Data in Oncology: Impact, Challenges, and Risk Assessment; River Publishers: Gistrup, Denmark, 2023; pp. 355–409. ISBN 978-87-7022-812-1. [Google Scholar]
- Chen, S.; Zhang, J.; Ruan, X.; Deng, K.; Zhang, J.; Zou, D.; He, X.; Li, F.; Bin, G.; Zeng, H.; et al. Voxel-Based Morphometry Analysis and Machine Learning Based Classification in Pediatric Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis. Brain Imaging Behav. 2020, 14, 1945–1954. [Google Scholar] [CrossRef]
- Palraj, P.; Siddan, G. Deep Learning Algorithm for Classification of Cerebral Palsy from Functional Magnetic Resonance Imaging (fMRI) Classification of Cerebral Palsy from Functional Magnetic Resonance Imaging. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 718–724. [Google Scholar] [CrossRef]
- Sethy, P.K.; Panigrahi, M.; Vijayakumar, K.; Behera, S.K. Machine Learning Based Classification of EEG Signal for Detection of Child Epileptic Seizure without Snipping. Int. J. Speech Technol. 2023, 26, 559–570. [Google Scholar] [CrossRef]
- Dong, F.; Yuan, Z.; Wu, D.; Jiang, L.; Liu, J.; Hu, W. Novel Seizure Detection Algorithm Based on Multi-Dimension Feature Selection. Biomed. Signal Process. Control 2023, 84, 104747. [Google Scholar] [CrossRef]
- Oliveira, J.; Renna, F.; Costa, P.D.; Nogueira, M.; Oliveira, C.; Ferreira, C.; Jorge, A.; Mattos, S.; Hatem, T.; Tavares, T.; et al. The CirCor DigiScope Dataset: From Murmur Detection to Murmur Classification. IEEE J. Biomed. Health Inform. 2022, 26, 2524–2535. [Google Scholar] [CrossRef]
- Struyf, T.; Deeks, J.J.; Dinnes, J.; Takwoingi, Y.; Davenport, C.; Leeflang, M.M.G.; Spijker, R.; Hooft, L.; Emperador, D.; Domen, J.; et al. Signs and Symptoms to Determine If a Patient Presenting in Primary Care or Hospital Outpatient Settings Has COVID-19. Cochrane Database Syst. Rev. 2022, 2022, CD013665. [Google Scholar] [CrossRef]
- Ghosh, P.; Katkar, G.D.; Shimizu, C.; Kim, J.; Khandelwal, S.; Tremoulet, A.H.; Kanegaye, J.T.; Abe, N.; Austin-Page, L.; Bryl, A.; et al. An Artificial Intelligence-Guided Signature Reveals the Shared Host Immune Response in MIS-C and Kawasaki Disease. Nat. Commun. 2022, 13, 2687. [Google Scholar] [CrossRef]
- Cohen, A.S.A.; Farrow, E.G.; Abdelmoity, A.T.; Alaimo, J.T.; Amudhavalli, S.M.; Anderson, J.T.; Bansal, L.; Bartik, L.; Baybayan, P.; Belden, B.; et al. Genomic Answers for Children: Dynamic Analyses of >1000 Pediatric Rare Disease Genomes. Genet. Med. 2022, 24, 1336–1348. [Google Scholar] [CrossRef]
- Padash, S.; Mohebbian, M.R.; Adams, S.J.; Henderson, R.D.E.; Babyn, P. Pediatric Chest Radiograph Interpretation: How Far Has Artificial Intelligence Come? A Systematic Literature Review. Pediatr. Radiol. 2022, 52, 1568–1580. [Google Scholar] [CrossRef]
- Kim, P.H.; Yoon, H.M.; Kim, J.R.; Hwang, J.-Y.; Choi, J.-H.; Hwang, J.; Lee, J.; Sung, J.; Jung, K.-H.; Bae, B.; et al. Bone Age Assessment Using Artificial Intelligence in Korean Pediatric Population: A Comparison of Deep-Learning Models Trained with Healthy Chronological and Greulich-Pyle Ages as Labels. Korean J. Radiol. 2023, 24, 1151–1163. [Google Scholar] [CrossRef]
- Prokop-Piotrkowska, M.; Marszałek-Dziuba, K.; Moszczyńska, E.; Szalecki, M.; Jurkiewicz, E. Traditional and New Methods of Bone Age Assessment-an Overview. JCRPE J. Clin. Res. Pediatr. Endocrinol. 2021, 13, 251–262. [Google Scholar] [CrossRef]
- Thodberg, H.H.; Thodberg, B.; Ahlkvist, J.; Offiah, A.C. Autonomous Artificial Intelligence in Pediatric Radiology: The Use and Perception of BoneXpert for Bone Age Assessment. Pediatr. Radiol. 2022, 52, 1338–1346. [Google Scholar] [CrossRef]
- Kim, D.-W.; Kim, J.; Kim, T.; Kim, T.; Kim, Y.-J.; Song, I.-S.; Ahn, B.; Choo, J.; Lee, D.-Y. Prediction of Hand-Wrist Maturation Stages Based on Cervical Vertebrae Images Using Artificial Intelligence. Orthod. Craniofacial Res. 2021, 24, 68–75. [Google Scholar] [CrossRef]
- Suh, J.; Heo, J.; Kim, S.J.; Park, S.; Jung, M.K.; Choi, H.S.; Choi, Y.; Oh, J.S.; Lee, H.I.; Lee, M.; et al. Bone Age Estimation and Prediction of Final Adult Height Using Deep Learning. Yonsei Med. J. 2023, 64, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Mutlu, O.C.; Kline, A.; Surabhi, S.; Washington, P.; Wall, D.P. Training and Profiling a Pediatric Facial Expression Classifier for Children on Mobile Devices: Machine Learning Study. JMIR Form. Res. 2023, 7, e39917. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Han, J.-X. Rehabilitation Educational Design for Children with Autism Based on the Radial Basis Function Neural Network. J. Healthc. Eng. 2021, 2021, 2961546. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Naik, N.; Somani, B.K.; Hameed, B.M.Z. Artificial Intelligence (Ai) in Urology-Current Use and Future Directions: An Itrue Study. Turk. J. Urol. 2020, 46, S27–S39. [Google Scholar] [CrossRef]
- Abdel Razek, A.A.K.; Alksas, A.; Shehata, M.; AbdelKhalek, A.; Abdel Baky, K.; El-Baz, A.; Helmy, E. Clinical Applications of Artificial Intelligence and Radiomics in Neuro-Oncology Imaging. Insights Imaging 2021, 12, 152. [Google Scholar] [CrossRef]
- Migliozzi, S.; Oh, Y.T.; Hasanain, M.; Garofano, L.; D’Angelo, F.; Najac, R.D.; Picca, A.; Bielle, F.; Di Stefano, A.L.; Lerond, J.; et al. Integrative Multi-Omics Networks Identify PKCδ and DNA-PK as Master Kinases of Glioblastoma Subtypes and Guide Targeted Cancer Therapy. Nat. Cancer 2023, 4, 181–202. [Google Scholar] [CrossRef]
- Tan, E.; Merchant, K.; KN, B.P.; CS, A.; Zhao, J.J.; Saffari, S.E.; Tan, P.H.; Tang, P.H. CT-Based Morphologic and Radiomics Features for the Classification of MYCN Gene Amplification Status in Pediatric Neuroblastoma. Childs Nerv. Syst. 2022, 38, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wu, C.; Zheng, H.; Wang, L.; Guan, W.; Duan, S.; Wang, D. Radiogenomics of Neuroblastoma in Pediatric Patients: CT-Based Radiomics Signature in Predicting MYCN Amplification. Eur. Radiol. 2021, 31, 3080–3089. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Qian, L.; Yang, S.; Ren, Q.; Zhang, S.; Qin, H.; Wang, W.; Wang, C.; Zhang, H.; Yang, J. Clinical Parameters Combined with Radiomics Features of PET/CT Can Predict Recurrence in Patients with High-Risk Pediatric Neuroblastoma. BMC Med. Imaging 2022, 22, 102. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xie, M.; Chen, X.; Zhu, J.; Ding, H.; Zhang, L.; Pan, Z.; He, L. Development and Validation of a CT-Based Radiomics Signature for Identifying High-Risk Neuroblastomas under the Revised Children’s Oncology Group Classification System. Pediatr. Blood Cancer 2023, 70, e30280. [Google Scholar] [CrossRef] [PubMed]
- Liu, W. Accuracy of Funding Information in Scopus: A Comparative Case Study. Scientometrics 2020, 124, 803–811. [Google Scholar] [CrossRef]
- Kokol, P. Discrepancies among Scopus and Web of Science, Coverage of Funding Information in Medical Journal Articles: A Follow-Up Study. J. Med. Libr. Assoc. 2023, 111, 703–709. [Google Scholar] [CrossRef]
Country | Number of Publications |
---|---|
United States of America | 1786 |
China | 531 |
Canada | 335 |
United Kingdom | 330 |
Germany | 211 |
India | 185 |
Italy | 179 |
Spain | 146 |
Australia | 142 |
South Korea | 132 |
Source Title | Number of Publications | Impact Factors (SJR—Scopus 2021) | H-Index | Quarter |
---|---|---|---|---|
Lecture Notes in Computer Science | 155 | 0.32 | 209 | Q3 |
Frontiers in Pediatrics | 70 | 0.80 | 62 | Q1 |
Scientific Reports | 67 | 0.97 | 282 | Q1 |
Pediatric Radiology | 65 | 0.65 | 95 | Q2 |
Progress in Biomedical Optics and Imaging Proceedings of SPIE | 50 | 0.21 | 60 | N/A |
PloS ONE | 48 | 0.89 | 404 | Q1 |
Pediatric Critical Care Medicine | 40 | 1.42 | 100 | Q1 |
Pediatric Research | 34 | 1.04 | 165 | Q1 |
IEEE Journal of Biomedical and Health Informatics | 30 | 1.67 | 146 | Q1 |
Computer Methods and Programs in Biomedicine | 29 | 1.12 | 124 | Q1 |
Color | Representative Author Keywords (Codes) | Categories | Themes |
---|---|---|---|
Green (n = 17) | Deep learning (431); CNN—convolutional neural network (152); pediatric pneumonia (n = 56); transfer learning (n = 54); bone age assessment (47); COVID-19 (43); congenital heart diseases (n = 29) | Deep learning with convolutional networks for complex decision making about bone age assessments and pneumonia; segmentation of echocardiography images into congenital heart diseases | Analyzing complex signals using deep learning |
Red (n = 22) | Machine learning (758); pediatrics (464); prediction (n = 61); natural language processing (n = 60); electronic health records (n = 58); clinical decision support (53); asthma (39); critical care (32); data mining (26); artificial neural networks (25); sepsis (25) | Machine learning on electronic health records for prediction and critical decision support in asthma and sepsis; natural language processing of electronic health records; big data analyses for pediatric cancer patients | Critical clinical decision making and prediction using machine learning and natural language processing |
Violet (n = 11) | Classification (73); SVM—support vector machines (63); epilepsy (57); artificial neural networks (32); feature extraction (28); cerebral palsy (17) | Segmentation, feature selection, and classification of EEG and MRI signals; seizure detection in epilepsy and cerebral palsy | MRI and EEG analyses in seizure detection in epilepsy and cerebral palsy |
Blue (n = 14) | Artificial intelligence (420); children (188); radiology and radiography (50); autism spectrum disorder (34); bone age (30); emergency department (20) | Artificial intelligence-based processing of radiography and radiology outputs for assessing bone age; diagnosis of autism spectrum disorder using artificial intelligence | Using artificial intelligence for diagnosis |
Yellow (n = 13) | MRI—magnetic resonance imaging (48); blastoma (46); CT—computer tomography (44); radiomics (41); cancer (24); Monte Carlo simulation (16) | Analysis of CT and MRI images for blastoma prognoses | Radiomics in pediatric cancer treatment |
Machine Learning Algorithms | AI Approaches | Pediatric Diagnoses | Applications in Pediatrics |
---|---|---|---|
Deep learning (464) | Classification (95) | Pneumonia (71) | Prediction (146) |
Convolutional neural network (196) | Natural language processing (60) | Epilepsy (70) | Clinical decision support (112) |
Transfer learning (54) | Data and text mining (31) | COVID-19 (43) | Computer-aided diagnosis (86) |
Support vector machine (51) | Feature selection and extraction (64) | Asthma (50) | Critical care (43) |
Artificial neural networks (111) | Monte Carlo simulation (33) | Obstructive sleep apnea (12) | Signal and image processing (73) |
Random forest (45) | Data augmentation (8) | Autism spectrum disorder (34) | Radiomics (41) |
Fuzzy logic (16) | Big data (19) | Sepsis (35) | Computer vision (16) |
Logistic regression (19) | Explainable artificial intelligence (10) | Cerebral palsy (17) | Triaging (11) |
Decision tree (18) | Digital health (16) | Kidney diseases (16) | Anomaly detection (12) |
Ensemble learning (15) | Expert systems (6) | Cancer (47) | Epidemiology (14) |
Genetic algorithm (8) | Crohn’s disease (12) | Length of stay (7) | |
Bayesian methods (10) | Cystic fibrosis (10) | Metabolomics (10) | |
Mental health (12) | Quality improvement (12) | ||
Congenital heart disease (39) | |||
Blastoma (50) | Severity of illness (9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Završnik, J.; Kokol, P.; Žlahtič, B.; Blažun Vošner, H. Artificial Intelligence and Pediatrics: Synthetic Knowledge Synthesis. Electronics 2024, 13, 512. https://doi.org/10.3390/electronics13030512
Završnik J, Kokol P, Žlahtič B, Blažun Vošner H. Artificial Intelligence and Pediatrics: Synthetic Knowledge Synthesis. Electronics. 2024; 13(3):512. https://doi.org/10.3390/electronics13030512
Chicago/Turabian StyleZavršnik, Jernej, Peter Kokol, Bojan Žlahtič, and Helena Blažun Vošner. 2024. "Artificial Intelligence and Pediatrics: Synthetic Knowledge Synthesis" Electronics 13, no. 3: 512. https://doi.org/10.3390/electronics13030512
APA StyleZavršnik, J., Kokol, P., Žlahtič, B., & Blažun Vošner, H. (2024). Artificial Intelligence and Pediatrics: Synthetic Knowledge Synthesis. Electronics, 13(3), 512. https://doi.org/10.3390/electronics13030512