Enhancing Small-Cell Capacity with Wireless Backhaul
Abstract
:1. Introduction
2. System Model
2.1. Performance Analysis
2.1.1. Capacity Analysis of the Target Small Cell
2.1.2. Capacity Analysis of the HetNets with Wireless Backhaul
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hwang, I.; Song, B.; Soliman, S.S. A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Commun. Mag. 2013, 51, 20–27. [Google Scholar] [CrossRef]
- Abdelmoaty, A.; Naboulsi, D.; Dahmany, G.; Gagnon, F. When Resiliency Matters: An Overview of 5G and Beyond Wireless Backhaul Network Design. IEEE Commun. Mag. 2023, 61, 206–212. [Google Scholar] [CrossRef]
- Tezergil, B.; Onur, E. Wireless backhaul in 5G and beyond: Issues, challenges and opportunities. IEEE Commun. Surv. Tutorials 2022, 24, 2579–2632. [Google Scholar] [CrossRef]
- Li, B.; Zhu, D.; Liang, P. Small cell in-band wireless backhaul in massive MIMO systems: A cooperation of next-generation techniques. IEEE Trans. Wirel. Commun. 2015, 14, 7057–7069. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; Cheng, J.; Leung, V.C. Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks. IEEE Trans. Commun. 2017, 66, 1705–1716. [Google Scholar] [CrossRef]
- Rezaabad, A.L.; Beyranvand, H.; Salehi, J.A.; Maier, M. Ultra-dense 5G small cell deployment for fiber and wireless backhaul-aware infrastructures. IEEE Trans. Veh. Technol. 2018, 67, 12231–12243. [Google Scholar] [CrossRef]
- Mowla, M.M.; Ahmad, I.; Habibi, D.; Phung, Q.V. Energy efficient backhauling for 5G small cell networks. IEEE Trans. Sustain. Comput. 2018, 4, 279–292. [Google Scholar] [CrossRef]
- Forouzan, N.; Rabiei, A.M.; Vehkaperä, M.; Wichman, R. A distributed resource allocation scheme for self-backhauled full-duplex small cell networks. IEEE Trans. Veh. Technol. 2021, 70, 1461–1473. [Google Scholar] [CrossRef]
- Son, H.; Choi, K. Low-Power Full-Duplex Self-Backhauling. IEEE Wirel. Commun. Lett. 2023, 13, 476–480. [Google Scholar] [CrossRef]
- Sharma, D.; Nandanwar, V. Performance of induction motor at low and high speed using model predictive control method. Int. J. Res. Sci. Eng. 2016, 3, 779–785. [Google Scholar]
- Ge, X.; Pan, L.; Tu, S.; Chen, H.H.; Wang, C.X. Wireless Backhaul Capacity of 5G Ultra-Dense Cellular Networks. In Proceedings of the 84th IEEE Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada, 18–21 September 2016; pp. 1–6. [Google Scholar]
- Dhillon, H.S.; Caire, G. Wireless backhaul networks: Capacity bound, scalability analysis and design guidelines. IEEE Trans. Wirel. Commun. 2015, 14, 6043–6056. [Google Scholar] [CrossRef]
- Elbayoumi, M.; Ibrahim, M.; Elhoushy, S.; Hamouda, W.; Youssef, A. Performance Analysis of Cellular Ultra Dense IoT Networks with Wireless Backhauls. IEEE Internet Things J. 2023, 10, 15774–15787. [Google Scholar] [CrossRef]
- Tran, Q.H.; Duong, T.M.; Kwon, S. Load Balancing for Integrated Access and Backhaul in mmWave Small Cells. IEEE Access 2023, 11, 138664–138674. [Google Scholar] [CrossRef]
- Guo, Z.; Niu, Y.; Mao, S.; He, R.; Wang, N.; Zhong, Z.; Ai, B. Joint Design of Access and Backhaul in Densely Deployed MmWave Small Cells. IEEE Trans. Veh. Technol. 2023, 72, 14498–14515. [Google Scholar] [CrossRef]
- Lee, J.; Choi, H.H.; Lim, S.C.; Kim, H.; Na, J.; Lee, H. Low-complexity Q-learning for Energy-aware Small-cell Networks with Integrated Access and Backhaul. IEEE Access 2023, 11, 121529–121538. [Google Scholar] [CrossRef]
- Zheng, G.; Wen, M.; Chen, Y.; Wu, Y.C.; Poor, H.V. Joint Transmit Precoding and Rate Allocation for Rate-Splitting Multiple Access Based Wireless Backhaul HetNets. In Proceedings of the ICC 2023—IEEE International Conference on Communications, Dalian, China, 10–12 August 2023; pp. 2105–2110. [Google Scholar]
- Siddique, U.; Tabassum, H.; Hossain, E. Downlink Spectrum Allocation for In-Band and Out-Band Wireless Backhauling of Full-Duplex Small Cells. IEEE Trans. Commun. 2017, 65, 3538–3554. [Google Scholar] [CrossRef]
- Andrews, J.G.; Baccelli, F.; Ganti, R.K. A tractable approach to coverage and rate in cellular networks. IEEE Trans. Commun. 2011, 59, 3122–3134. [Google Scholar] [CrossRef]
- Proakis, J.G.; Salehi, M. Digital Communications; McGraw-Hill Higher Education: New York, NY, USA, 2007. [Google Scholar]
- Kang, X.; Liang, Y.C.; Nallanathan, A.; Garg, H.K.; Zhang, R. Optimal power allocation for fading channels in cognitive radio networks: Ergodic capacity and outage capacity. IEEE Trans. Wireless Commun. 2009, 8, 940–950. [Google Scholar] [CrossRef]
- Brent, R.P. Algorithms for Minimization without Derivatives; Prentice-Hall Series in Automatic Computation; Prentice-Hall: Englewood Cliffs, NJ, USA, 1973. [Google Scholar]
- Jo, H.S.; Sang, Y.J.; Xia, P.; Andrews, J.G. Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Trans. Wirel. Commun. 2012, 11, 3484–3495. [Google Scholar] [CrossRef]
- Ronkainen, H.; Edstam, J.; Ericsson, A.; Östberg, C. Integrated access and backhaul a New Type of Wireless Backhaul in 5G. Ericsson Technol. Rev. 2020, 2020, 2–11. [Google Scholar] [CrossRef]
Macro/Small cell/UE distribution | PPP/PPP/uniform distribution |
Density of macrocells () | m2 |
Density of small cells () | m2 |
Bandwidth allocation (W) | 10 MHz |
Power consumption of macrocells () | 40 W |
Power consumption of small cells () | 1 W/2 W |
Macro/Small cell pathloss exponent (/) | 4 |
Original wired backhaul () | Hz, Hz |
Noise power () [dbm] | −104 |
Bandwidth of Resource Block (RB) [Hz] | 180 K |
Number of subcarriers per RB | 12 |
Bandwidth of subcarrier [Hz] | 15 k |
parameter of fading channel h () | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, R.; Liu, W. Enhancing Small-Cell Capacity with Wireless Backhaul. Electronics 2024, 13, 797. https://doi.org/10.3390/electronics13040797
Tao R, Liu W. Enhancing Small-Cell Capacity with Wireless Backhaul. Electronics. 2024; 13(4):797. https://doi.org/10.3390/electronics13040797
Chicago/Turabian StyleTao, Ran, and Wuling Liu. 2024. "Enhancing Small-Cell Capacity with Wireless Backhaul" Electronics 13, no. 4: 797. https://doi.org/10.3390/electronics13040797
APA StyleTao, R., & Liu, W. (2024). Enhancing Small-Cell Capacity with Wireless Backhaul. Electronics, 13(4), 797. https://doi.org/10.3390/electronics13040797