Domain Adaptive Channel Pruning
Abstract
:1. Introduction
2. Background and Related Work
2.1. Background
2.2. Related Work
3. Domain Adaptive Channel Pruning
3.1. Framework
3.2. Pre-Train the Initial Model Using DANN
3.3. Overview of Our DACP Approach
3.4. DACP in Each Layer
3.5. Choice of the Cost Function
3.6. Efficient Use of Samples from the Target Domain
3.7. Pruning with DAN
4. Experiment
4.1. Implementation Details
4.2. Experiments on Office-31
4.3. Experiments on ImageCLEF-DA
4.4. Ablation Study
4.5. Channel Pruning Results for DAN
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Csurka, G. Domain Adaptation for Visual Applications: A Comprehensive Survey. arXiv 2017, arXiv:1702.05374. [Google Scholar]
- Yu, C.; Wang, J.; Chen, Y.; Wu, Z. Accelerating Deep Unsupervised Domain Adaptation with Transfer Channel Pruning. arXiv 2019, arXiv:1904.02654. [Google Scholar]
- Ro, Y.; Choi, J.Y. Autolr: Layer-wise pruning and auto-tuning of learning rates in fine-tuning of deep networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 2–9 February 2021; pp. 2486–2494. [Google Scholar]
- Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V. Domain-adversarial training of neural networks. J. Mach. Learn. Res. 2016, 17, 1–35. [Google Scholar]
- Long, M.; Cao, Y.; Wang, J.; Jordan, M. Learning transferable features with deep adaptation networks. In Proceedings of the ICML, Lille, France, 6–11 July 2015; pp. 97–105. [Google Scholar]
- Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Unsupervised domain adaptation with residual transfer networks. In Proceedings of the NIPS, Barcelona, Spain, 5–10 December 2016; pp. 136–144. [Google Scholar]
- Sun, B.; Saenko, K. Deep coral: Correlation alignment for deep domain adaptation. In Proceedings of the ECCV, Amsterdam, The Netherlands, 11–14 October 2016; pp. 443–450. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Zhang, N.; Saenko, K.; Darrell, T. Deep domain confusion: Maximizing for domain invariance. arXiv 2014, arXiv:1412.3474. [Google Scholar]
- Bousmalis, K.; Silberman, N.; Dohan, D.; Erhan, D.; Krishnan, D. Unsupervised Pixel-Level Domain Adaptation With Generative Adversarial Networks. In Proceedings of the CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 3722–3731. [Google Scholar]
- Bousmalis, K.; Trigeorgis, G.; Silberman, N.; Krishnan, D.; Erhan, D. Domain separation networks. In Proceedings of the NIPS, Barcelona, Spain, 5–10 December 2016; pp. 343–351. [Google Scholar]
- Ganin, Y.; Lempitsky, V. Unsupervised domain adaptation by backpropagation. In Proceedings of the ICML, Lille, France, 6–11 July 2015; pp. 1180–1189. [Google Scholar]
- Liu, M.Y.; Tuzel, O. Coupled generative adversarial networks. In Proceedings of the NIPS, Barcelona, Spain, 5–10 December 2016; pp. 469–477. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial Discriminative Domain Adaptation. In Proceedings of the CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 2962–2971. [Google Scholar]
- Zhang, W.; Ouyang, W.; Li, W.; Xu, D. Collaborative and Adversarial Network for Unsupervised domain adaptation. In Proceedings of the CVPR, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3801–3809. [Google Scholar]
- Mei, Z.; Ye, P.; Ye, H.; Li, B.; Guo, J.; Chen, T.; Ouyang, W. Automatic Loss Function Search for Adversarial Unsupervised Domain Adaptation. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 5868–5881. [Google Scholar] [CrossRef]
- Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnor-net: Imagenet classification using binary convolutional neural networks. In Proceedings of the ECCV, Amsterdam, The Netherlands, 11–14 October 2016; pp. 525–542. [Google Scholar]
- Gong, Y.; Liu, L.; Yang, M.; Bourdev, L. Compressing deep convolutional networks using vector quantization. arXiv 2014, arXiv:1412.6115. [Google Scholar]
- Jaderberg, M.; Vedaldi, A.; Zisserman, A. Speeding up Convolutional Neural Networks with Low Rank Expansions. In Proceedings of the BMVC, Nottingham, UK, 1–5 September 2014. [Google Scholar]
- Kim, Y.D.; Park, E.; Yoo, S.; Choi, T.; Yang, L.; Shin, D. Compression of deep convolutional neural networks for fast and low power mobile applications. arXiv 2015, arXiv:1511.06530. [Google Scholar]
- Lebedev, V.; Ganin, Y.; Rakhuba, M.; Oseledets, I.; Lempitsky, V. Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv 2014, arXiv:1412.6553. [Google Scholar]
- Xue, J.; Li, J.; Gong, Y. Restructuring of deep neural network acoustic models with singular value decomposition. In Proceedings of the Interspeech, Lyon, France, 25–29 August 2013. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In Proceedings of the CVPR, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- He, Y.; Zhang, X.; Sun, J. Channel Pruning for Accelerating Very Deep Neural Networks. In Proceedings of the ICCV, Venice, Italy, 22–29 October 2017; pp. 1398–1406. [Google Scholar]
- Hu, H.; Peng, R.; Tai, Y.W.; Tang, C.K. Network trimming: A data-driven neuron pruning approach towards efficient deep architectures. arXiv 2016, arXiv:1607.03250. [Google Scholar]
- Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. In Proceedings of the ICLR, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Luo, J.H.; Wu, J.; Lin, W. ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression. In Proceedings of the ICCV, Venice, Italy, 22–29 October 2017; pp. 5068–5076. [Google Scholar]
- Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning convolutional neural networks for resource efficient inference. In Proceedings of the ICLR, Toulon, France, 24–26 April 2017. [Google Scholar]
- Guo, J.; Liu, J.; Xu, D. JointPruning: Pruning Networks Along Multiple Dimensions for Efficient Point Cloud Processing. IEEE Trans. Circuits Syst. Video Technol. 2022, 21, 3659–3672. [Google Scholar] [CrossRef]
- Liu, J.; Guo, J.; Xu, D. APSNet: Toward adaptive point sampling for efficient 3D action recognition. IEEE Trans. Image Process. 2023, 31, 5287–5302. [Google Scholar] [CrossRef] [PubMed]
- Masana, M.; van de Weijer, J.; Herranz, L.; Bagdanov, A.D.; Alvarez, J.M. Domain-adaptive deep network compression. In Proceedings of the ICCV, Venice, Italy, 22–29 October 2017; pp. 4289–4297. [Google Scholar]
- Wu, C.; Wen, W.; Afzal, T.; Zhang, Y.; Chen, Y. A compact DNN: Approaching googlenet-level accuracy of classification and domain adaptation. In Proceedings of the CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 5668–5677. [Google Scholar]
- Zhong, Y.; Li, V.; Okada, R.; Maki, A. Target Aware Network Adaptation for Efficient Representation Learning. In Proceedings of the ECCV Workshops, Munich, Germany, 8–14 September 2018; pp. 450–467. [Google Scholar]
- Guo, J.; Xu, D.; Lu, G. CBANet: Toward Complexity and Bitrate Adaptive Deep Image Compression Using a Single Network. IEEE Trans. Image Process. 2023, 32, 2049–2062. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning efficient convolutional networks through network slimming. In Proceedings of the CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 2736–2744. [Google Scholar]
- Guo, J.; Zhang, W.; Ouyang, W.; Xu, D. Model Compression Using Progressive Channel Pruning. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 1114–1124. [Google Scholar] [CrossRef]
- Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Learning structured sparsity in deep neural networks. In Proceedings of the NIPS, Barcelona, Spain, 5–10 December 2016; pp. 2074–2082. [Google Scholar]
- Guo, J.; Ouyang, W.; Xu, D. Multi-Dimensional Pruning: A Unified Framework for Model Compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 14–19 June 2020. [Google Scholar]
- Zhuang, Z.; Tan, M.; Zhuang, B.; Liu, J.; Guo, Y.; Wu, Q.; Huang, J.; Zhu, J. Discrimination-aware channel pruning for deep neural networks. In Proceedings of the NIPS, Montreal, QC, Canada, 3–8 December 2018; pp. 883–894. [Google Scholar]
- Guo, J.; Xu, D.; Ouyang, W. Multidimensional Pruning and Its Extension: A Unified Framework for Model Compression. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Rotman, G.; Feder, A.; Reichart, R. Model Compression for Domain Adaptation through Causal Effect Estimation. arXiv 2021, arXiv:2101.07086. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556v6. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the CVPR, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Guo, J.; Ouyang, W.; Xu, D. Channel Pruning Guided by Classification Loss and Feature Importance. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020. [Google Scholar]
- Kumar, A.; Sattigeri, P.; Wadhawan, K.; Karlinsky, L.; Feris, R.; Freeman, W.T.; Wornell, G. Co-regularized Alignment for Unsupervised Domain Adaptation. arXiv 2018, arXiv:1811.05443. [Google Scholar]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531. [Google Scholar]
- Guo, J.; Liu, J.; Wang, Z.; Ma, Y.; Gong, R.; Xu, K.; Liu, X. Adaptive Contrastive Knowledge Distillation for BERT Compression. In Proceedings of the Findings of the Association for Computational Linguistics: ACL, Toronto, ON, Canada, 9–14 July 2023; pp. 8941–8953. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the NIPS, Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1097–1105. [Google Scholar]
- Saenko, K.; Kulis, B.; Fritz, M.; Darrell, T. Adapting visual category models to new domains. In Proceedings of the ECCV, Crete, Greece, 5–11 September 2010; pp. 213–226. [Google Scholar]
- Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Deep transfer learning with joint adaptation networks. PMLR 2017, 70, 2208–2217. [Google Scholar]
Methods | A→W | W→A | A→D | D→A | D→W | W→D | Avg. |
---|---|---|---|---|---|---|---|
VGG16 [43] | 70.0 | 56.4 | 74.1 | 53.5 | 95.7 | 99.0 | 74.8 |
DANN-VGG16 | 81.9 | 64.3 | 80.9 | 63.4 | 97.1 | 99.6 | 81.2 |
CP-VGG16 [24] | 75.5 | 60.7 | 77.9 | 58.4 | 95.5 | 98.6 | 77.8 |
DACP-VGG16 | 82.0 | 64.1 | 80.9 | 63.0 | 97.0 | 99.6 | 81.1 |
AlexNet [49] | 61.6 | 49.8 | 63.8 | 51.1 | 95.4 | 99.0 | 70.1 |
DANN-AlexNet | 64.9 | 47.9 | 70.9 | 50.8 | 95.1 | 97.8 | 71.2 |
CP-AlexNet [24] | 57.6 | 45.3 | 60.4 | 46.1 | 91.7 | 97.0 | 66.4 |
DACP-AlexNet | 64.4 | 47.7 | 70.9 | 51.3 | 95.1 | 97.8 | 71.2 |
ResNet50 [44] | 68.4 | 60.7 | 68.9 | 62.5 | 96.7 | 99.3 | 76.1 |
DANN-ResNet50 | 82.6 | 64.2 | 81.1 | 63.4 | 97.0 | 99.4 | 81.3 |
CP-ResNet50 [24] | 80.6 | 61.3 | 79.7 | 60.1 | 95.9 | 98.2 | 79.3 |
DACP-ResNet50 | 83.2 | 64.1 | 81.1 | 64.3 | 96.6 | 99.4 | 81.5 |
Methods | I→C | C→I | I→P | P→I | C→P | P→C | Avg. |
---|---|---|---|---|---|---|---|
VGG16 [43] | 89.7 | 74.2 | 71.6 | 83.2 | 62.3 | 87.8 | 78.1 |
DANN-VGG16 | 92.2 | 81.8 | 71.9 | 84.8 | 70.4 | 87.3 | 81.4 |
CP-VGG16 [24] | 82.8 | 71.2 | 64.6 | 77.3 | 62.9 | 83.3 | 73.7 |
DACP-VGG16 | 90.7 | 78.2 | 70.4 | 83.5 | 68.4 | 87.3 | 79.8 |
AlexNet [49] | 84.3 | 71.3 | 66.2 | 70.0 | 59.3 | 84.5 | 73.9 |
DANN-AlexNet | 85.8 | 73.5 | 66.5 | 74.5 | 60.9 | 85.8 | 74.5 |
CP-AlexNet [24] | 73.7 | 64.2 | 56.2 | 60.3 | 53.1 | 70.3 | 63.0 |
DACP-AlexNet | 84.7 | 70.5 | 61.4 | 73.0 | 59.6 | 83.5 | 72.1 |
ResNet50 [44] | 91.5 | 78.0 | 74.8 | 83.9 | 65.5 | 91.2 | 80.7 |
DANN-ResNet50 | 92.8 | 85.0 | 72.1 | 85.8 | 73.1 | 91.0 | 83.3 |
CP-ResNet50 [24] | 85.3 | 71.7 | 62.4 | 76.2 | 59.2 | 80.7 | 72.6 |
DACP-ResNet50 | 92.5 | 84.0 | 70.9 | 85.5 | 72.4 | 90.2 | 82.6 |
Methods | I→C | C→I | I→P | P→I | C→P | P→C | Avg. |
---|---|---|---|---|---|---|---|
DACP-AlexNet | 84.7 | 70.5 | 61.4 | 73.0 | 59.6 | 83.5 | 72.1 |
DACP w/o DG | 77.0 | 67.5 | 58.9 | 65.5 | 57.9 | 74.5 | 66.9 |
DACP w/o PL | 76.3 | 65.0 | 58.9 | 62.8 | 53.1 | 73.3 | 64.9 |
DACP w/o AC | 82.3 | 70.0 | 60.2 | 71.3 | 58.4 | 83.2 | 70.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Zhang, C.; Gao, L.; Guo, Y.; Guo, J. Domain Adaptive Channel Pruning. Electronics 2024, 13, 887. https://doi.org/10.3390/electronics13050887
Yang G, Zhang C, Gao L, Guo Y, Guo J. Domain Adaptive Channel Pruning. Electronics. 2024; 13(5):887. https://doi.org/10.3390/electronics13050887
Chicago/Turabian StyleYang, Ge, Chao Zhang, Ling Gao, Yufei Guo, and Jinyang Guo. 2024. "Domain Adaptive Channel Pruning" Electronics 13, no. 5: 887. https://doi.org/10.3390/electronics13050887
APA StyleYang, G., Zhang, C., Gao, L., Guo, Y., & Guo, J. (2024). Domain Adaptive Channel Pruning. Electronics, 13(5), 887. https://doi.org/10.3390/electronics13050887