Heterostructure-Based Optoelectronic Neuromorphic Devices
Abstract
:1. Introduction
2. Fundamental Functionalities of Neuromorphic Devices Mimicking Biological Synapse
2.1. Excitatory Postsynaptic Current (EPSC)/Inhibitory Postsynaptic Current (IPSC)
2.2. Short-Term Plasticity (STP)/Long-Term Plasticity (LTP)
2.3. Paired-Pulse Facilitation (PPF)/Paired-Pulse Depression (PPD)
2.4. Spike-Time-Dependent Plasticity (STDP)/Spike-Rate-Dependent Plasticity (SRDP)
2.5. Potentiation/Depression
3. Heterostructure-Based Optoelectronic Neuromorphic Devices Using Various Wavelength of Light
3.1. Optoelectronic Neuromorphic Devices Using UV Light
3.2. Optoelectronic Neuromorphic Devices Using Visible Light
3.3. Optoelectronic Neuromorphic Devices Using IR Light
3.4. Optoelectronic Neuromorphic Devices Using Multiple Wavelengths
4. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elson, R.C.; Selverston, A.I.; Huerta, R.; Rulkov, N.F.; Rabinovich, M.I.; Abarbanel, H.D. Synchronous behavior of two coupled biological neurons. Phys. Rev. Lett. 1998, 81, 5692. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, W.-j.; Ma, J.; Alzahrani, F.; Hobiny, A. A new photosensitive neuron model and its dynamics. Front. Inf. Technol. Electron. Eng. 2020, 21, 1387–1396. [Google Scholar] [CrossRef]
- Harikesh, P.C.; Yang, C.-Y.; Tu, D.; Gerasimov, J.Y.; Dar, A.M.; Armada-Moreira, A.; Massetti, M.; Kroon, R.; Bliman, D.; Olsson, R. Organic electrochemical neurons and synapses with ion mediated spiking. Nat. Commun. 2022, 13, 901. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhang, T.; Yang, Y.; Huang, R. A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 2020, 7, 011312. [Google Scholar] [CrossRef]
- Milano, G.; Pedretti, G.; Fretto, M.; Boarino, L.; Benfenati, F.; Ielmini, D.; Valov, I.; Ricciardi, C. Brain-inspired structural plasticity through reweighting and rewiring in multi-terminal self-organizing memristive nanowire networks. Adv. Intell. Syst. 2020, 2, 2000096. [Google Scholar] [CrossRef]
- Keene, S.T.; Lubrano, C.; Kazemzadeh, S.; Melianas, A.; Tuchman, Y.; Polino, G.; Scognamiglio, P.; Cinà, L.; Salleo, A.; van de Burgt, Y. A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 2020, 19, 969–973. [Google Scholar] [CrossRef]
- Wei, H.; Ni, Y.; Sun, L.; Yu, H.; Gong, J.; Du, Y.; Ma, M.; Han, H.; Xu, W. Flexible electro-optical neuromorphic transistors with tunable synaptic plasticity and nociceptive behavior. Nano Energy 2021, 81, 105648. [Google Scholar] [CrossRef]
- Tian, G.L.; Bi, J.S.; Xu, G.B.; Xi, K.; Xu, Y.N.; Yang, X.Q.; Yin, H.X.; Xu, Q.X.; Li, Y.L. Hf0.5Zr0.5O2-based ferroelectric bionic electronic synapse device with highly symmetrical and linearity weight modification. Electron. Lett. 2020, 56, 840–843. [Google Scholar] [CrossRef]
- Jung, W.; Yoon, J.; Ji, S.; Choi, J.Y.; Kim, J.M.; Nam, Y.; Kim, E.Y.; Lee, J. Exploring linearity of deep neural network trained QSM: QSMnet+. Neuroimage 2020, 211, 116619. [Google Scholar] [CrossRef]
- Yang, S.T.; Li, X.Y.; Yu, T.L.; Wang, J.; Fang, H.; Nie, F.; He, B.; Zhao, L.; Lü, W.M.; Yan, S.S. High-Performance Neuromorphic Computing Based on Ferroelectric Synapses with Excellent Conductance Linearity and Symmetry. Adv. Funct. Mater. 2022, 32, 2202366. [Google Scholar] [CrossRef]
- Hao, Y.; Huang, X.; Dong, M.; Xu, B. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule. Neural Netw. 2020, 121, 387–395. [Google Scholar] [CrossRef]
- Wang, K.; Li, L.; Zhao, R.; Zhao, J.; Zhou, Z.; Wang, J.; Wang, H.; Tang, B.; Lu, C.; Lou, J. A pure 2H-MoS2 nanosheet-based memristor with low power consumption and linear multilevel storage for artificial synapse emulator. Adv. Electron. Mater. 2020, 6, 1901342. [Google Scholar] [CrossRef]
- Lee, Y.; Liu, Y.; Seo, D.-G.; Oh, J.Y.; Kim, Y.; Li, J.; Kang, J.; Kim, J.; Mun, J.; Foudeh, A.M. A low-power stretchable neuromorphic nerve with proprioceptive feedback. Nat. Biomed. Eng. 2023, 7, 511–519. [Google Scholar] [CrossRef]
- Wang, T.-Y.; Meng, J.-L.; Rao, M.-Y.; He, Z.-Y.; Chen, L.; Zhu, H.; Sun, Q.-Q.; Ding, S.-J.; Bao, W.-Z.; Zhou, P. Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett. 2020, 20, 4111–4120. [Google Scholar] [CrossRef]
- Li, X.; Tang, J.; Zhang, Q.; Gao, B.; Yang, J.J.; Song, S.; Wu, W.; Zhang, W.; Yao, P.; Deng, N. Power-efficient neural network with artificial dendrites. Nat. Nanotechnol. 2020, 15, 776–782. [Google Scholar] [CrossRef]
- Shin, H.; Jeong, S.; Lee, J.-H.; Sun, W.; Choi, N.; Cho, I.-J. 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics. Nat. Commun. 2021, 12, 492. [Google Scholar] [CrossRef]
- Wu, Q.; Dang, B.; Lu, C.; Xu, G.; Yang, G.; Wang, J.; Chuai, X.; Lu, N.; Geng, D.; Wang, H. Spike encoding with optic sensory neurons enable a pulse coupled neural network for ultraviolet image segmentation. Nano Lett. 2020, 20, 8015–8023. [Google Scholar] [CrossRef]
- Zhang, H.; Thompson, J.; Gu, M.; Jiang, X.D.; Cai, H.; Liu, P.Y.; Shi, Y.; Zhang, Y.; Karim, M.F.; Lo, G.Q. Efficient on-chip training of optical neural networks using genetic algorithm. Acs Photonics 2021, 8, 1662–1672. [Google Scholar] [CrossRef]
- Gao, Z.; Ju, X.; Zhang, H.; Liu, X.; Chen, H.; Li, W.; Zhang, H.; Liang, L.; Cao, H. InP Quantum Dots Tailored Oxide Thin Film Phototransistor for Bioinspired Visual Adaptation. Adv. Funct. Mater. 2023, 33, 2305959. [Google Scholar] [CrossRef]
- Wan, C.; Cai, P.; Guo, X.; Wang, M.; Matsuhisa, N.; Yang, L.; Lv, Z.; Luo, Y.; Loh, X.J.; Chen, X. An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 2020, 11, 4602. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhu, L.; Zhang, H.; Li, G.; Yi, C.; Li, Y.; Yang, Y.; Ding, Y.; Zhen, M.; Gao, S. Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning. Nat. Methods 2021, 18, 551–556. [Google Scholar] [CrossRef]
- Subin, P.; Midhun, P.; Antony, A.; Saji, K.; Jayaraj, M. Optoelectronic synaptic plasticity mimicked in ZnO-based artificial synapse for neuromorphic image sensing application. Mater. Today Commun. 2022, 33, 104232. [Google Scholar] [CrossRef]
- Austin, E.; Geisler, A.N.; Nguyen, J.; Kohli, I.; Hamzavi, I.; Lim, H.W.; Jagdeo, J. Visible light. Part I: Properties and cutaneous effects of visible light. J. Am. Acad. Dermatol. 2021, 84, 1219–1231. [Google Scholar] [CrossRef]
- Park, Y.; Roth, J.; Oka, D.; Hirose, Y.; Hasegawa, T.; Paul, A.; Pogrebnyakov, A.; Gopalan, V.; Birol, T.; Engel-Herbert, R. SrNbO3 as a transparent conductor in the visible and ultraviolet spectra. Commun. Phys. 2020, 3, 102. [Google Scholar] [CrossRef]
- Mokbel, H.; Graff, B.; Dumur, F.; Lalevée, J. NIR sensitizer operating under long wavelength (1064 nm) for free radical photopolymerization processes. Macromol. Rapid Commun. 2020, 41, 2000289. [Google Scholar] [CrossRef]
- Mohania, D.; Chandel, S.; Kumar, P.; Verma, V.; Digvijay, K.; Tripathi, D.; Choudhury, K.; Mitten, S.K.; Shah, D. Ultraviolet radiations: Skin defense-damage mechanism. Ultrav. Light Hum. Health Dis. Environ. 2017, 996, 71–87. [Google Scholar]
- Selvam, K.; Sivapragasam, S.; Poon, G.M.; Wyrick, J.J. Detecting recurrent passenger mutations in melanoma by targeted UV damage sequencing. Nat. Commun. 2023, 14, 2702. [Google Scholar] [CrossRef]
- Kim, J.J.; Andrew, T.L. Real-time and noninvasive detection of UV-Induced deep tissue damage using electrical tattoos. Biosens. Bioelectron. 2020, 150, 111909. [Google Scholar] [CrossRef]
- Panuski, C.; Englund, D.; Hamerly, R. Fundamental thermal noise limits for optical microcavities. Phys. Rev. X 2020, 10, 041046. [Google Scholar] [CrossRef]
- Guan, J.; Lai, R.; Xiong, A.; Liu, Z.; Gu, L. Fixed pattern noise reduction for infrared images based on cascade residual attention CNN. Neurocomputing 2020, 377, 301–313. [Google Scholar] [CrossRef]
- Al-Said, S.M.; Abu-Nabah, B.A. Physics-based thermal noise effect reduction in sonic IR crack length estimation. Nondestruct. Test. Eval. 2023, 1–22. [Google Scholar] [CrossRef]
- Lee, S.; Park, T.; Hur, J.; Yoo, H. Calcium Titanate Orthorhombic Perovskite-Nickel Oxide Solar-Blind UVC Photodetectors with Unprecedented Long-Term Stability Exceeding 500 Days and Their Applications to Real-Time Flame Detection. ACS Photonics 2022, 9, 4005–4016. [Google Scholar] [CrossRef]
- Choi, W.; Park, T.; Yoo, H.; Hur, J. Vertical asymmetric metal-semiconductor-metal photodiode based on β-Ga2O3 thin films fabricated via solution process for arc discharge detection. J. Alloys Compd. 2023, 953, 170169. [Google Scholar] [CrossRef]
- Hong, S.; Zagni, N.; Choo, S.; Liu, N.; Baek, S.; Bala, A.; Yoo, H.; Kang, B.H.; Kim, H.J.; Yun, H.J. Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry. Nat. Commun. 2021, 12, 3559. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Liu, D.; Wang, Q.; Li, T.; Wang, Z. Cu2O-BiOI isotype (pp) heterojunction: Boosted visible-light-driven photoelectrochemical activity for non-enzymatic H2O2 sensing. Appl. Surf. Sci. 2020, 521, 146434. [Google Scholar] [CrossRef]
- Narang, N.; Bourlai, T. Classification of soft biometric traits when matching near-infrared long-range face images against their visible counterparts. Secur. Soc. Identity Mob. Platf. Technol. Secur. Priv. Identity Manag. 2020, 77–104. [Google Scholar]
- Kwan, C.; Larkin, J. Detection of small moving objects in long range infrared videos from a change detection perspective. Photonics 2021, 8, 394. [Google Scholar] [CrossRef]
- Pupeza, I.; Huber, M.; Trubetskov, M.; Schweinberger, W.; Hussain, S.A.; Hofer, C.; Fritsch, K.; Poetzlberger, M.; Vamos, L.; Fill, E. Field-resolved infrared spectroscopy of biological systems. Nature 2020, 577, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Jose, D.A.; Sakla, R.; Sharma, N.; Gadiyaram, S.; Kaushik, R.; Ghosh, A. Sensing and bioimaging of the gaseous signaling molecule hydrogen sulfide by near-infrared fluorescent probes. ACS Sens. 2020, 5, 3365–3391. [Google Scholar] [CrossRef]
- Zhang, N.-N.; Lu, C.-Y.; Chen, M.-J.; Xu, X.-L.; Shu, G.-F.; Du, Y.-Z.; Ji, J.-S. Recent advances in near-infrared II imaging technology for biological detection. J. Nanobiotechnol. 2021, 19, 132. [Google Scholar] [CrossRef]
- Liang, S.J.; Cheng, B.; Cui, X.; Miao, F. Van der Waals heterostructures for high-performance device applications: Challenges and opportunities. Adv. Mater. 2020, 32, 1903800. [Google Scholar] [CrossRef]
- Ahmad, W.; Liu, J.; Jiang, J.; Hao, Q.; Wu, D.; Ke, Y.; Gan, H.; Laxmi, V.; Ouyang, Z.; Ouyang, F. Strong Interlayer Transition in Few-Layer InSe/PdSe2 van der Waals Heterostructure for Near-Infrared Photodetection. Adv. Funct. Mater. 2021, 31, 2104143. [Google Scholar] [CrossRef]
- Singh, A.K.; Ahn, K.; Yoo, D.; Lee, S.; Ali, A.; Yi, G.-C.; Chung, K. van der Waals integration of GaN light-emitting diode arrays on foreign graphene films using semiconductor/graphene heterostructures. NPG Asia Mater. 2022, 14, 57. [Google Scholar] [CrossRef]
- Afzal, A.M.; Iqbal, M.Z.; Mumtaz, S.; Akhtar, I. Multifunctional and high-performance GeSe/PdSe2 heterostructure device with a fast photoresponse. J. Mater. Chem. C 2020, 8, 4743–4753. [Google Scholar] [CrossRef]
- Qi, T.; Gong, Y.; Li, A.; Ma, X.; Wang, P.; Huang, R.; Liu, C.; Sakidja, R.; Wu, J.Z.; Chen, R. Interlayer transition in a vdW heterostructure toward ultrahigh detectivity shortwave infrared photodetectors. Adv. Funct. Mater. 2020, 30, 1905687. [Google Scholar] [CrossRef]
- Pi, L.; Wang, P.; Liang, S.-J.; Luo, P.; Wang, H.; Li, D.; Li, Z.; Chen, P.; Zhou, X.; Miao, F. Broadband convolutional processing using band-alignment-tunable heterostructures. Nat. Electron. 2022, 5, 248–254. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Liang, S.-J.; Wang, S.; Wang, P.; Li, Z.A.; Wang, Z.; Gao, A.; Pan, C.; Liu, C.; Liu, J. Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 2020, 6, eaba6173. [Google Scholar] [CrossRef]
- Wang, Z.; Hemmetter, A.; Uzlu, B.; Saeed, M.; Hamed, A.; Kataria, S.; Negra, R.; Neumaier, D.; Lemme, M.C. Graphene in 2D/3D heterostructure diodes for high performance electronics and optoelectronics. Adv. Electron. Mater. 2021, 7, 2001210. [Google Scholar] [CrossRef]
- Stanev, T.K.; Liu, P.; Zeng, H.; Lenferink, E.J.; Murthy, A.A.; Speiser, N.; Watanabe, K.; Taniguchi, T.; Dravid, V.P.; Stern, N.P. Direct Patterning of Optoelectronic Nanostructures Using Encapsulated Layered Transition Metal Dichalcogenides. ACS Appl. Mater. Interfaces 2022, 14, 23775–23784. [Google Scholar] [CrossRef]
- Cerrillo, J.G.; Distler, A.; Matteocci, F.; Forberich, K.; Wagner, M.; Basu, R.; Castriotta, L.A.; Jafarzadeh, F.; Brunetti, F.; Yang, F. Matching the photocurrent of 2-terminal mechanically-stacked perovskite/organic tandem solar modules by varying the cell width. Sol. RRL 2023, 8, 2300767. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Sato, K.; Hamada, M.; Murata, F.; Ishikawa, Y. Annual output energy harvested by building-integrated photovoltaics based on the optimized structure of 2-terminal perovskite/silicon tandem cells under realistic conditions. Sol. Energy 2022, 241, 452–459. [Google Scholar] [CrossRef]
- Bellucci, A.; García-Linares, P.; Martí, A.; Trucchi, D.M.; Datas, A. A three-terminal hybrid thermionic-photovoltaic energy converter. Adv. Energy Mater. 2022, 12, 2200357. [Google Scholar] [CrossRef]
- O’Donnell, C. Nonlinear slow-timescale mechanisms in synaptic plasticity. Curr. Opin. Neurobiol. 2023, 82, 102778. [Google Scholar] [CrossRef]
- Abbott, L.F.; Nelson, S.B. Synaptic plasticity: Taming the beast. Nat. Neurosci. 2000, 3, 1178–1183. [Google Scholar] [CrossRef]
- Chen, X.; Chen, B.; Jiang, B.; Gao, T.; Shang, G.; Han, S.T.; Kuo, C.C.; Roy, V.A.; Zhou, Y. Nanowires for UV–vis–IR optoelectronic synaptic devices. Adv. Funct. Mater. 2023, 33, 2208807. [Google Scholar] [CrossRef]
- Kim, J.; Kim, Y.; Kwon, O.; Kim, T.; Oh, S.; Jin, S.; Park, W.; Kwon, J.D.; Hong, S.W.; Lee, C.S. Modulation of Synaptic Plasticity Mimicked in Al Nanoparticle-Embedded IGZO Synaptic Transistor. Adv. Electron. Mater. 2020, 6, 1901072. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chen, J.; Chen, P.H.; Chang, T.C.; Wu, Y.; Eshraghian, J.K.; Moon, J.; Yoo, S.; Wang, Y.H.; Chen, W.C. Adaptive synaptic memory via lithium ion modulation in RRAM devices. Small 2020, 16, 2003964. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Y.; Huo, Z.; Wang, X.; Hu, G.; Xu, Z.; Lu, H.; Lu, Q.; Sun, X.; Qiu, L. A Two-Terminal Optoelectronic Synapses Array Based on the ZnO/Al2O3/CdS Heterojunction with Strain-Modulated Synaptic Weight. Adv. Electron. Mater. 2023, 9, 2201068. [Google Scholar] [CrossRef]
- Culotta, L.; Penzes, P. Exploring the mechanisms underlying excitation/inhibition imbalance in human iPSC-derived models of ASD. Mol. Autism 2020, 11, 32. [Google Scholar]
- Vinel, C.; Rosser, G.; Guglielmi, L.; Constantinou, M.; Pomella, N.; Zhang, X.; Boot, J.R.; Jones, T.A.; Millner, T.O.; Dumas, A.A. Comparative epigenetic analysis of tumour initiating cells and syngeneic EPSC-derived neural stem cells in glioblastoma. Nat. Commun. 2021, 12, 6130. [Google Scholar] [CrossRef]
- Choi, Y.; Oh, S.; Qian, C.; Park, J.-H.; Cho, J.H. Vertical organic synapse expandable to 3D crossbar array. Nat. Commun. 2020, 11, 4595. [Google Scholar] [CrossRef]
- Park, J.; Jang, Y.; Lee, J.; An, S.; Mok, J.; Lee, S.Y. Synaptic Transistor Based on In-Ga-Zn-O Channel and Trap Layers with Highly Linear Conductance Modulation for Neuromorphic Computing. Adv. Electron. Mater. 2023, 9, 2201306. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, Z.; Chen, J.; Wang, Z.; Zhou, Y.; Zhou, L.; Chen, X.; Han, S.T. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 2018, 30, 1802883. [Google Scholar] [CrossRef]
- France, G.; Volianskis, R.; Ingram, R.; Bannister, N.; Rothärmel, R.; Irvine, M.; Fang, G.; Burnell, E.; Sapkota, K.; Costa, B.M. Differential regulation of STP, LTP and LTD by structurally diverse NMDA receptor subunit-specific positive allosteric modulators. Neuropharmacology 2022, 202, 108840. [Google Scholar] [CrossRef]
- Wang, Y.; Han, B.; Mayor, M.; Samorì, P. Opto-Electrochemical Synaptic Memory in Supramolecularly Engineered Janus 2D MoS2. Adv. Mater. 2023, 36, 2307359. [Google Scholar] [CrossRef]
- Ansari, M.H.R.; Kannan, U.M.; Cho, S. Core-shell dual-gate nanowire charge-trap memory for synaptic operations for neuromorphic applications. Nanomaterials 2021, 11, 1773. [Google Scholar] [CrossRef]
- Mu, B.; Guo, L.; Liao, J.; Xie, P.; Ding, G.; Lv, Z.; Zhou, Y.; Han, S.T.; Yan, Y. Near-Infrared Artificial Synapses for Artificial Sensory Neuron System. Small 2021, 17, 2103837. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Lee, J.S. Synergistic improvement of long-term plasticity in photonic synapses using ferroelectric polarization in hafnia-based oxide-semiconductor transistors. Adv. Mater. 2020, 32, 1907826. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-C.; Li, M.; Chang, Y.-H.; Yang, S.-H.; Lin, C.-Y.; Chang, Y.-M.; Yang, F.-S.; Watanabe, K.; Taniguchi, T.; Ho, C.-H. Inverse paired-pulse facilitation in neuroplasticity based on interface-boosted charge trapping layered electronics. Nano Energy 2020, 77, 105258. [Google Scholar] [CrossRef]
- Yang, W.C.; Lin, Y.C.; Inagaki, S.; Shimizu, H.; Ercan, E.; Hsu, L.C.; Chueh, C.C.; Higashihara, T.; Chen, W.C. Low-Energy-Consumption and Electret-Free Photosynaptic Transistor Utilizing Poly (3-hexylthiophene)-Based Conjugated Block Copolymers. Adv. Sci. 2022, 9, 2105190. [Google Scholar] [CrossRef]
- Sokolov, A.; Ali, M.; Li, H.; Jeon, Y.R.; Ko, M.J.; Choi, C. Partially oxidized MXene Ti3C2Tx sheets for memristor having synapse and threshold resistive switching characteristics. Adv. Electron. Mater. 2021, 7, 2000866. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, T.; Ren, Y.; Lin, Y.; Xu, H.; Zhao, X.; Liu, Y.; Ielmini, D. Toward a generalized Bienenstock-Cooper-Munro rule for spatiotemporal learning via triplet-STDP in memristive devices. Nat. Commun. 2020, 11, 1510. [Google Scholar] [CrossRef] [PubMed]
- Walters, B.; Jacob, M.V.; Amirsoleimani, A.; Rahimi Azghadi, M. A Review of Graphene-Based Memristive Neuromorphic Devices and Circuits. Adv. Intell. Syst. 2023, 5, 2300136. [Google Scholar] [CrossRef]
- Subin, P.; Asha, A.; Saji, K.; Jayaraj, M. Spike-dependent plasticity modulation in TiO2-based synaptic device. J. Mater. Sci. Mater. Electron. 2021, 32, 13051–13061. [Google Scholar] [CrossRef]
- Mannion, D.J.; Vu, V.C.; Ng, W.H.; Mehonic, A.; Kenyon, A.J. Unipolar potentiation and depression in memristive devices utilising the subthreshold regime. IEEE Trans. Nanotechnol. 2023, 22, 313–320. [Google Scholar] [CrossRef]
- Hadiyal, K.; Ganesan, R.; Rastogi, A.; Thamankar, R. Bio-inspired artificial synapse for neuromorphic computing based on NiO nanoparticle thin film. Sci. Rep. 2023, 13, 7481. [Google Scholar] [CrossRef] [PubMed]
- Farronato, M.; Mannocci, P.; Melegari, M.; Ricci, S.; Compagnoni, C.M.; Ielmini, D. Reservoir computing with charge-trap memory based on a MoS2 channel for neuromorphic engineering. Adv. Mater. 2023, 35, 2205381. [Google Scholar] [CrossRef]
- Yan, Y.; Li, J.C.; Chen, Y.T.; Wang, X.Y.; Cai, G.R.; Park, H.W.; Kim, J.H.; Zhao, J.S.; Hwang, C.S. Area-Type Electronic Bipolar Switching Al/TiO1.7/TiO2/Al Memory with Linear Potentiation and Depression Characteristics. ACS Appl. Mater. Interfaces 2021, 13, 39561–39572. [Google Scholar] [CrossRef]
- Shao, Z.-Y.; Huang, H.-M.; Guo, X. Optimizing linearity of weight updating in TaOx-based memristors by depression pulse scheme for neuromorphic computing. Solid State Ion. 2021, 370, 115746. [Google Scholar] [CrossRef]
- Guo, J.; Yuan, X.; Ruan, H.; Duan, Y.; Liu, Y.; Kong, C.; Liu, Y.; Su, M.; Xie, T.; Wang, H. A flexible PI/graphene heterojunction optoelectronic device modulated by TENG and UV light for neuromorphic vision system. Nano Energy 2023, 117, 108928. [Google Scholar] [CrossRef]
- Liu, X.; Huang, W.; Kai, C.; Yin, L.; Wang, Y.; Liu, X.; Pi, X.; Yang, D. Photogated Synaptic Transistors Based on the Heterostructure of 4H-SiC and Organic Semiconductors for Neuromorphic Ultraviolet Vision. ACS Appl. Electron. Mater. 2023, 5, 367–374. [Google Scholar] [CrossRef]
- Ni, Y.; Zhang, S.; Sun, L.; Liu, L.; Wei, H.; Xu, Z.; Xu, W.; Xu, W. A low-dimensional hybrid pin heterojunction neuromorphic transistor with ultra-high UV sensitivity and immediate switchable plasticity. Appl. Mater. Today 2021, 25, 101223. [Google Scholar] [CrossRef]
- Ahmed, T.; Tahir, M.; Low, M.X.; Ren, Y.; Tawfik, S.A.; Mayes, E.L.; Kuriakose, S.; Nawaz, S.; Spencer, M.J.; Chen, H. Fully Light-controlled memory and neuromorphic computation in layered black phosphorus. Adv. Mater. 2021, 33, 2004207. [Google Scholar] [CrossRef]
- Lv, Z.; Chen, M.; Qian, F.; Roy, V.A.; Ye, W.; She, D.; Wang, Y.; Xu, Z.X.; Zhou, Y.; Han, S.T. Mimicking neuroplasticity in a hybrid biopolymer transistor by dual modes modulation. Adv. Funct. Mater. 2019, 29, 1902374. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Y.; Chen, Q.; Wang, Y.; Jiang, J.; Wang, Y.; Fu, Y.; Liu, Q.; Wang, Q.; He, D. A perovskite-based artificial photonic synapse with visible light modulation and ultralow current for neuromorphic computing. Microelectron. Eng. 2023, 274, 111982. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, B.H.; Kamaraj, E.; Kim, D.; Kim, H.; Park, S.; Park, H.J. Light-enhanced molecular polarity enabling multispectral color-cognitive memristor for neuromorphic visual system. Nat. Commun. 2023, 14, 5775. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yin, L.; Huang, S.; Xiao, R.; Zhang, Y.; Li, D.; Pi, X.; Yang, D. Silicon-Nanomembrane-Based Broadband Synaptic Phototransistors for Neuromorphic Vision. Nano Lett. 2023, 23, 8460–8467. [Google Scholar] [CrossRef]
- Zhu, Q.-B.; Li, B.; Yang, D.-D.; Liu, C.; Feng, S.; Chen, M.-L.; Sun, Y.; Tian, Y.-N.; Su, X.; Wang, X.-M. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 2021, 12, 1798. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, T.; Zeng, S.; Hao, D.; Yang, B.; Dai, S.; Liu, D.; Xiong, L.; Zhao, C.; Huang, J. Tailoring neuroplasticity in flexible perovskite QDs-based optoelectronic synaptic transistors by dual modes modulation. Nano Energy 2022, 95, 106987. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Wang, Z.; Chen, J.; Yang, Q.; Lv, Z.; Zhou, Y.; Zhai, Y.; Li, Z.; Han, S.T. Near-infrared annihilation of conductive filaments in quasiplane MoSe2/Bi2Se3 nanosheets for mimicking heterosynaptic plasticity. Small 2019, 15, 1805431. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhou, Y.; Yang, X.; Wang, F.; Ye, W.; Zhu, X.; She, D.; Lu, W.D.; Han, S.-T. Near infrared neuromorphic computing via upconversion-mediated optogenetics. Nano Energy 2020, 67, 104262. [Google Scholar] [CrossRef]
- Hou, Y.-X.; Li, Y.; Zhang, Z.-C.; Li, J.-Q.; Qi, D.-H.; Chen, X.-D.; Wang, J.-J.; Yao, B.-W.; Yu, M.-X.; Lu, T.-B. Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano 2020, 15, 1497–1508. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Zhao, C.; Wang, X.; Wang, Z.; Fu, S.; Lin, Y.; Zeng, T.; Zhao, X.; Xu, H.; Zhang, X. Plasmonic Optoelectronic Memristor Enabling Fully Light-Modulated Synaptic Plasticity for Neuromorphic Vision. Adv. Sci. 2022, 9, 2104632. [Google Scholar] [CrossRef]
- Li, H.; Jiang, X.; Ye, W.; Zhang, H.; Zhou, L.; Zhang, F.; She, D.; Zhou, Y.; Han, S.-T. Fully photon modulated heterostructure for neuromorphic computing. Nano Energy 2019, 65, 104000. [Google Scholar] [CrossRef]
- Huang, X.; Li, Q.; Shi, W.; Liu, K.; Zhang, Y.; Liu, Y.; Wei, X.; Zhao, Z.; Guo, Y.; Liu, Y. Dual-Mode Learning of Ambipolar Synaptic Phototransistor Based on 2D Perovskite/Organic Heterojunction for Flexible Color Recognizable Visual System. Small 2021, 17, 2102820. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Guo, Z.; Sun, T.; Guo, P.; Liu, X.; Gao, H.; Dai, S.; Xiong, L.; Huang, J. Energy-efficient organic photoelectric synaptic transistors with environment-friendly CuInSe2 quantum dots for broadband neuromorphic computing. SmartMat 2023, e1246. [Google Scholar] [CrossRef]
- Cho, S.W.; Kwon, S.M.; Lee, M.; Jo, J.-W.; Heo, J.S.; Kim, Y.-H.; Cho, H.K.; Park, S.K. Multi-spectral gate-triggered heterogeneous photonic neuro-transistors for power-efficient brain-inspired neuromorphic computing. Nano Energy 2019, 66, 104097. [Google Scholar] [CrossRef]
- Ni, Y.; Feng, J.; Liu, J.; Yu, H.; Wei, H.; Du, Y.; Liu, L.; Sun, L.; Zhou, J.; Xu, W. An artificial nerve capable of UV-perception, NIR–vis switchable plasticity modulation, and motion state monitoring. Adv. Sci. 2022, 9, 2102036. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, P.; Guo, Z.; Li, L.; Sun, T.; Liu, D.; Tian, L.; Zu, G.; Xiong, L.; Zhang, J. Retina-Inspired Artificial Synapses with Ultraviolet to Near-Infrared Broadband Responses for Energy-Efficient Neuromorphic Visual Systems. Adv. Funct. Mater. 2023, 33, 2302885. [Google Scholar] [CrossRef]
Structure | Material | Type | Bandgap (eV) | Wavelength (nm) | Application | Ref. |
---|---|---|---|---|---|---|
2-terminal | Graphene/PI | Inorganic/Organic | 0.0 | 365 | Image recognition | [80] |
4H-SiC/ P3HT | Inorganic/Organic | 2.0/3.3 | 375 | Image recognition | [81] | |
Transistor | ZnO/CdS | Inorganic | 2.4/3.3 | 365 | Image recognition | [58] |
ZnO NWs/ C8-BTBT | Inorganic/Organic | 3.9/3.3 | 380 | Image recognition | [82] | |
BP/PxOx | Inorganic | 0.3~1.0 | 365/280 | Image recognition | [83] | |
CsPbBr3 QDs/Pentacene | Inorganic/Organic | 1.8/2.8 | 365 | N/A | [63] | |
CDs/Silk protein | Inorganic/Organic | 1.1/3.9~4.1 | 365 | Image recognition | [84] | |
2-terminal | CsPbI2Br/N-G QDs/ P3H | Inorganic/Organic | 3.2/1.9/2.0 | 470 | Image recognition | [85] |
NiO/CH-P | Inorganic/Organic | 1.8 | 450/525/630 | Color recognition | [86] | |
Transistor | PbS QDs/ P3HT/Si NM | Inorganic/Organic | 0.8/2.0/1.12 | 532 | Image recognition | [87] |
CsPbBr3-QDs/ CNT | Inorganic | 2.4/1.3 | 405 | Image recognition | [88] | |
CsPbBr3 QDs/ DPP-DTT | Inorganic/Organic | 2.3/1.7 | 450 | Image recognition Logic | [89] | |
2-terminal | MoSe2/Bi2Se3 | Inorganic | 1.5/4.2 | 790 | Image recognition | [90] |
Transistor | MoS2/UC NPs/ Pentacene | Inorganic/Organic | 1.7/1.8 | 980 | Image recognition | [91] |
2-terminal | PbS QDs/ pyrenyl graphdiyne | Inorganic/Organic | 0.8/0.0/2.07 | 450/980 | Image recognition | [92] |
TiO2/Ag NPs | Inorganic | 3.2/2.9 | 360/532 | Image contrast Noise reduction | [93] | |
PbS/ZnO | Inorganic | 3.4/1.2 | 365/980 | Image recognition | [94] | |
Transistor | PEA2SnI4/Y6 | Inorganic/Organic | 1.3/2.0 | 450/520/650 /808 | Color recognition | [95] |
CuInSe2 QDs/ P3HT | Inorganic/Organic | 1.9/1.2 | 365/850 | Image recognition | [96] | |
CdS/ZTO | Inorganic | 2.3/3.9 | 365/465/525 | Pavlov’s learning simulation | [97] | |
Transistor | C8-BTBT/ F16CuPc | Organic | 1.5/3.7 | 380/640/790 | Image recognition | [98] |
PbS QDs/ Pentacene | Inorganic/Organic | 1.8/0.9 | 365/550/850 | Image recognition | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Shin, J.; Yoo, H. Heterostructure-Based Optoelectronic Neuromorphic Devices. Electronics 2024, 13, 1076. https://doi.org/10.3390/electronics13061076
Park J, Shin J, Yoo H. Heterostructure-Based Optoelectronic Neuromorphic Devices. Electronics. 2024; 13(6):1076. https://doi.org/10.3390/electronics13061076
Chicago/Turabian StylePark, Jisoo, Jihyun Shin, and Hocheon Yoo. 2024. "Heterostructure-Based Optoelectronic Neuromorphic Devices" Electronics 13, no. 6: 1076. https://doi.org/10.3390/electronics13061076
APA StylePark, J., Shin, J., & Yoo, H. (2024). Heterostructure-Based Optoelectronic Neuromorphic Devices. Electronics, 13(6), 1076. https://doi.org/10.3390/electronics13061076