iBVP Dataset: RGB-Thermal rPPG Dataset with High Resolution Signal Quality Labels
Abstract
:1. Introduction
- Introducing the iBVP dataset comprising RGB and thermal facial video data with signal-quality-assessed ground-truth PPG signals.
- Presenting and validating a new rPPG framework, iBVPNet, for estimating the BVP signal from RGB as well as thermal video frames.
- Discovering MACC [44] as an effective evaluation metric to assess rPPG methods.
2. iBVP Dataset
2.1. Data Collection Protocol
2.2. Participants
2.3. Data Acquisition
2.4. Morphology and Time Delay of PPG Signals
2.5. Pre-Processing and Signal Quality Assessment
2.6. Comparison with Existing Datasets
3. Validation of iBVP Dataset
3.1. Experiments
3.2. Evaluation Metrics
3.3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1D-CNN | 1-dimensional convolutional neural network |
BPM | Beats per minute |
BVP | Blood volume pulse |
ECG | Electrocardiogram |
HR | Heart rate |
PPG | Photoplethysmography |
RGB | Color images with red, green, and blue frames |
Appendix A. Detailed Results of Multifold Evaluation
Appendix A.1. RGB Video Frames
Folds | MACC (Avg) | SNR (Avg) | RMSE (HR) | Corr (HR) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PhysNet3D | RTrPPG |
iBVPNet (Ours) | PhysNet3D | RTrPPG |
iBVPNet (Ours) | PhysNet3D | RTrPPG |
iBVPNet (Ours) | PhysNet3D | RTrPPG |
iBVPNet (Ours) | |||||
0 | 0.767 | 0.669 | 0.790 | 0.532 | 0.250 | 0.762 | 2.829 | 6.058 | 1.476 | 0.846 | 0.568 | 0.860 | ||||
1 | 0.734 | 0.654 | 0.710 | 0.373 | 0.190 | 0.423 | 8.412 | 12.480 | 5.325 | 0.538 | 0.258 | 0.376 | ||||
2 | 0.830 | 0.773 | 0.860 | 0.709 | 0.475 | 0.972 | 2.937 | 6.213 | 1.412 | 0.888 | 0.587 | 0.934 | ||||
3 | 0.718 | 0.637 | 0.660 | 0.305 | 0.113 | 0.291 | 5.848 | 7.591 | 4.542 | 0.800 | 0.674 | 0.679 | ||||
4 | 0.851 | 0.763 | 0.836 | 0.637 | 0.402 | 0.740 | 2.330 | 3.993 | 1.681 | 0.955 | 0.879 | 0.945 | ||||
5 | 0.867 | 0.801 | 0.853 | 0.601 | 0.373 | 0.808 | 2.092 | 3.508 | 1.113 | 0.966 | 0.905 | 0.973 | ||||
6 | 0.780 | 0.689 | 0.824 | 0.573 | 0.297 | 0.825 | 5.114 | 7.682 | 2.342 | 0.898 | 0.826 | 0.945 | ||||
7 | 0.821 | 0.751 | 0.821 | 0.603 | 0.342 | 0.806 | 2.943 | 5.051 | 2.652 | 0.903 | 0.781 | 0.830 | ||||
8 | 0.702 | 0.603 | 0.744 | 0.329 | 0.113 | 0.604 | 4.103 | 11.395 | 2.692 | 0.772 | 0.655 | 0.724 | ||||
9 | 0.743 | 0.680 | 0.746 | 0.445 | 0.271 | 0.535 | 6.222 | 5.044 | 3.932 | 0.909 | 0.911 | 0.870 |
Appendix A.2. Thermal Video Frames
Folds | MACC (Avg) | SNR (Avg) | RMSE (HR) | Corr (HR) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PhysNet3D |
iBVPNet (Ours) | PhysNet3D |
iBVPNet (Ours) | PhysNet3D |
iBVPNet (Ours) | PhysNet3D |
iBVPNet (Ours) | |||||
0 | 0.377 | 0.469 | −0.099 | 0.363 | 6.496 | 3.144 | 0.092 | 0.136 | ||||
1 | 0.352 | 0.403 | −0.110 | 0.109 | 6.932 | 5.557 | 0.286 | 0.065 | ||||
2 | 0.389 | 0.437 | −0.071 | 0.266 | 5.599 | 4.731 | −0.139 | −0.218 | ||||
3 | 0.378 | 0.409 | −0.151 | 0.171 | 5.856 | 5.037 | 0.093 | 0.589 | ||||
4 | 0.367 | 0.401 | −0.120 | 0.138 | 5.475 | 5.401 | 0.065 | −0.060 | ||||
5 | 0.368 | 0.442 | −0.149 | 0.232 | 5.628 | 4.856 | −0.141 | −0.046 | ||||
6 | 0.350 | 0.430 | −0.114 | 0.213 | 6.815 | 5.865 | 0.014 | 0.365 | ||||
7 | 0.338 | 0.386 | −0.150 | 0.113 | 5.453 | 6.015 | −0.238 | −0.247 | ||||
8 | 0.358 | 0.431 | −0.144 | 0.264 | 6.409 | 4.245 | −0.063 | 0.238 | ||||
9 | 0.326 | 0.322 | −0.238 | −0.279 | 8.732 | 9.152 | −0.162 | 0.129 |
Appendix B. Performance Comparison of SOTA rPPG Methods on Existing Bench-Marking Datasets and iBVP Dataset
Datasets | rPPG Method | RMSE (HR) | Corr (HR) |
---|---|---|---|
PURE [8] | PhysNet3D [35] | 2.60 | 0.99 |
rPPGNet [76] | 1.21 | 1.00 | |
SAM-rPPGNet [37] | 1.21 | 1.00 | |
MANHOB-HCI [7] | PhysNet3D [35] | 8.76 | 0.69 |
rPPGNet [76] | 5.93 | 0.88 | |
VIPL-HR [10] | PhysNet3D [35] | 14.80 | 0.20 |
AutoHR [78] | 8.68 | 0.72 | |
iBVP Dataset (ours) | PhysNet3D [35] | 4.28 | 0.85 |
RTrPPG [38] | 6.90 | 0.70 | |
iBVPNet (ours) | 2.72 | 0.81 |
Appendix C. Evaluation of PPG-Signal-Quality Assessment Methods
Appendix D. Demographic Information of the Study Participants
PID | Gender | Age | Ethnicity † |
---|---|---|---|
p01 | M | 33 | A |
p02 | F | 19 | A |
p03 | M | 21 | A |
p04 | F | 20 | A |
p05 | F | 32 | D |
p06 | F | 19 | C |
p07 | M | 18 | C |
p08 | F | 30 | C |
p09 | F | 25 | C |
p10 | F | 23 | A |
p11 | M | 32 | A |
p12 | F | 30 | A |
p13 | F | 25 | C |
p14 | F | 23 | A |
p15 | F | 24 | A |
p16 | F | 20 | A |
p17 | M | 28 | E |
p18 | F | 24 | C |
p19 | F | 21 | A |
p20 | M | 27 | C |
p21 | F | 27 | C |
p22 | M | 28 | A |
p23 | F | 34 | A |
p24 | F | 25 | C |
p25 | F | 27 | C |
p26 | F | 22 | B |
p27 | M | 45 | A |
p28 | F | 31 | C |
p29 | F | 28 | A |
p30 | F | 35 | B |
p31 | M | 33 | A |
p32 | F | 24 | A |
p33 | M | 29 | D |
References
- Hertzman, A.B. The Blood Supply of Various Skin Areas as Estimated by the Photoelectric Plethysmograph. Am. J. Physiol.-Leg. Content 1938, 124, 328–340. [Google Scholar] [CrossRef]
- Verkruysse, W.; Svaasand, L.O.; Nelson, J.S. Remote Plethysmographic Imaging Using Ambient Light. Opt. Express 2008, 16, 21434–21445. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Bianchi-Berthouze, N.; Julier, S.J. DeepBreath: Deep Learning of Breathing Patterns for Automatic Stress Recognition Using Low-Cost Thermal Imaging in Unconstrained Settings. In Proceedings of the 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), San Antonio, TX, USA, 23–26 October 2017; pp. 456–463. [Google Scholar] [CrossRef]
- Cho, Y. Rethinking Eye-blink: Assessing Task Difficulty through Physiological Representation of Spontaneous Blinking. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, New York, NY, USA, 8–13 May 2021; pp. 1–12. [Google Scholar] [CrossRef]
- Reşit Kavsaoğlu, A.; Polat, K.; Recep Bozkurt, M. A Novel Feature Ranking Algorithm for Biometric Recognition with PPG Signals. Comput. Biol. Med. 2014, 49, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Liu, T.; Sun, Y.; Li, Y.; Zhao, S.; Avolio, A. Remote Photoplethysmography for Heart Rate Measurement: A Review. Biomed. Signal Process. Control 2024, 88, 105608. [Google Scholar] [CrossRef]
- Soleymani, M.; Lichtenauer, J.; Pun, T.; Pantic, M. A Multimodal Database for Affect Recognition and Implicit Tagging. IEEE Trans. Affect. Comput. 2012, 3, 42–55. [Google Scholar] [CrossRef]
- Stricker, R.; Müller, S.; Gross, H.M. Non-Contact Video-Based Pulse Rate Measurement on a Mobile Service Robot. In Proceedings of the 23rd IEEE International Symposium on Robot and Human Interactive Communication, Edinburgh, UK, 25–29 August 2014; pp. 1056–1062. [Google Scholar] [CrossRef]
- Zhang, Z.; Girard, J.M.; Wu, Y.; Zhang, X.; Liu, P.; Ciftci, U.; Canavan, S.; Reale, M.; Horowitz, A.; Yang, H.; et al. Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3438–3446. [Google Scholar]
- Niu, X.; Han, H.; Shan, S.; Chen, X. VIPL-HR: A Multi-modal Database for Pulse Estimation from Less-Constrained Face Video. In Proceedings of the Computer Vision—ACCV 2018, Perth, Australia, 2–6 December 2018; Jawahar, C., Li, H., Mori, G., Schindler, K., Eds.; Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2019; pp. 562–576. [Google Scholar] [CrossRef]
- Bobbia, S.; Macwan, R.; Benezeth, Y.; Mansouri, A.; Dubois, J. Unsupervised Skin Tissue Segmentation for Remote Photoplethysmography. Pattern Recognit. Lett. 2019, 124, 82–90. [Google Scholar] [CrossRef]
- Sabour, R.M.; Benezeth, Y.; De Oliveira, P.; Chappé, J.; Yang, F. UBFC-Phys: A Multimodal Database For Psychophysiological Studies of Social Stress. IEEE Trans. Affect. Comput. 2023, 14, 622–636. [Google Scholar] [CrossRef]
- Revanur, A.; Li, Z.; Ciftci, U.A.; Yin, L.; Jeni, L.A. The First Vision for Vitals (V4V) Challenge for Non-Contact Video-Based Physiological Estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 2760–2767. [Google Scholar]
- McDuff, D.; Wander, M.; Liu, X.; Hill, B.L.; Hernandez, J.; Lester, J.; Baltrusaitis, T. SCAMPS: Synthetics for Camera Measurement of Physiological Signals. arXiv 2022, arXiv:2206.04197. [Google Scholar] [CrossRef]
- Špetlík, R. Visual Heart Rate Estimation with Convolutional Neural Network. In Proceedings of the British Machine Vision Conference, Newcastle, UK, 9–13 September 2018. [Google Scholar]
- Castaneda, D.; Esparza, A.; Ghamari, M.; Soltanpur, C.; Nazeran, H. A Review on Wearable Photoplethysmography Sensors and Their Potential Future Applications in Health Care. Int. J. Biosens. Bioelectron. 2018, 4, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pi, Z.; Liu, B. TROIKA: A General Framework for Heart Rate Monitoring Using Wrist-Type Photoplethysmographic Signals during Intensive Physical Exercise. IEEE Trans. Biomed. Eng. 2015, 62, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.H.; Chang, K.Y.; Huang, C.S.; Jung, T.P. IC-U-Net: A U-Net-based Denoising Autoencoder Using Mixtures of Independent Components for Automatic EEG Artifact Removal. NeuroImage 2022, 263, 119586. [Google Scholar] [CrossRef]
- Jain, P.; Ding, C.; Rudin, C.; Hu, X. A Self-Supervised Algorithm for Denoising Photoplethysmography Signals for Heart Rate Estimation from Wearables. arXiv 2023, arXiv:2307.05339. [Google Scholar] [CrossRef]
- Joshi, J.; Wang, K.; Cho, Y. PhysioKit: An Open-Source, Low-Cost Physiological Computing Toolkit for Single- and Multi-User Studies. Sensors 2023, 23, 8244. [Google Scholar] [CrossRef] [PubMed]
- Geng, Z.; Guo, M.H.; Chen, H.; Li, X.; Wei, K.; Lin, Z. Is Attention Better Than Matrix Decomposition? arXiv 2021, arXiv:2109.04553. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, C.; Cai, P.; Zhong, Z.; Huang, H.; Jiang, Y. Tiny-PPG: A Lightweight Deep Neural Network for Real-Time Detection of Motion Artifacts in Photoplethysmogram Signals on Edge Devices. Internet Things 2024, 25, 101007. [Google Scholar] [CrossRef]
- Guo, Z.; Ding, C.; Hu, X.; Rudin, C. A Supervised Machine Learning Semantic Segmentation Approach for Detecting Artifacts in Plethysmography Signals from Wearables. Physiol. Meas. 2021, 42, 125003. [Google Scholar] [CrossRef] [PubMed]
- Poh, M.Z.; McDuff, D.J.; Picard, R.W. Non-Contact, Automated Cardiac Pulse Measurements Using Video Imaging and Blind Source Separation. Opt. Express 2010, 18, 10762–10774. [Google Scholar] [CrossRef] [PubMed]
- de Haan, G.; Jeanne, V. Robust Pulse Rate From Chrominance-Based rPPG. IEEE Trans. Biomed. Eng. 2013, 60, 2878–2886. [Google Scholar] [CrossRef] [PubMed]
- de Haan, G.; van Leest, A. Improved Motion Robustness of Remote-PPG by Using the Blood Volume Pulse Signature. Physiol. Meas. 2014, 35, 1913. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; den Brinker, A.C.; Stuijk, S.; de Haan, G. Algorithmic Principles of Remote PPG. IEEE Trans. Biomed. Eng. 2017, 64, 1479–1491. [Google Scholar] [CrossRef] [PubMed]
- Pilz, C.S.; Zaunseder, S.; Krajewski, J.; Blazek, V. Local Group Invariance for Heart Rate Estimation From Face Videos in the Wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1254–1262. [Google Scholar]
- Chen, W.; McDuff, D. DeepPhys: Video-Based Physiological Measurement Using Convolutional Attention Networks. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer: Cham, Switzerland, 2018; Volume 11206, pp. 356–373. [Google Scholar] [CrossRef]
- Liu, X.; Fromm, J.; Patel, S.; McDuff, D. Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement. In Proceedings of the Advances in Neural Information Processing Systems, Online, 6 June 2020; Curran Associates, Inc.: Nice, France, 2020; Volume 33, pp. 19400–19411. [Google Scholar]
- Niu, X.; Shan, S.; Han, H.; Chen, X. RhythmNet: End-to-End Heart Rate Estimation from Face via Spatial-Temporal Representation. IEEE Trans. Image Process. 2020, 29, 2409–2423. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Han, H. NAS-HR: Neural Architecture Search for Heart Rate Estimation from Face Videos. Virtual Real. Intell. Hardw. 2021, 3, 33–42. [Google Scholar] [CrossRef]
- Song, R.; Chen, H.; Cheng, J.; Li, C.; Liu, Y.; Chen, X. PulseGAN: Learning to Generate Realistic Pulse Waveforms in Remote Photoplethysmography. IEEE J. Biomed. Health Inform. 2021, 25, 1373–1384. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Han, H.; Zhou, S.K. Dual-GAN: Joint BVP and Noise Modeling for Remote Physiological Measurement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 12404–12413. [Google Scholar]
- Yu, Z.; Li, X.; Zhao, G. Remote Photoplethysmograph Signal Measurement from Facial Videos Using Spatio-Temporal Networks. arXiv 2019, arXiv:1905.02419. [Google Scholar] [CrossRef]
- Bousefsaf, F.; Pruski, A.; Maaoui, C. 3D Convolutional Neural Networks for Remote Pulse Rate Measurement and Mapping from Facial Video. Appl. Sci. 2019, 9, 4364. [Google Scholar] [CrossRef]
- Hu, M.; Qian, F.; Wang, X.; He, L.; Guo, D.; Ren, F. Robust Heart Rate Estimation With Spatial–Temporal Attention Network From Facial Videos. IEEE Trans. Cogn. Dev. Syst. 2022, 14, 639–647. [Google Scholar] [CrossRef]
- Botina-Monsalve, D.; Benezeth, Y.; Miteran, J. RTrPPG: An Ultra Light 3DCNN for Real-Time Remote Photoplethysmography. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022; pp. 2146–2154. [Google Scholar]
- Yu, Z.; Shen, Y.; Shi, J.; Zhao, H.; Torr, P.H.S.; Zhao, G. PhysFormer: Facial Video-Based Physiological Measurement with Temporal Difference Transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 4186–4196. [Google Scholar]
- Yu, Z.; Shen, Y.; Shi, J.; Zhao, H.; Cui, Y.; Zhang, J.; Torr, P.; Zhao, G. PhysFormer++: Facial Video-Based Physiological Measurement with SlowFast Temporal Difference Transformer. Int. J. Comput. Vis. 2023, 131, 1307–1330. [Google Scholar] [CrossRef]
- Liu, X.; Hill, B.; Jiang, Z.; Patel, S.; McDuff, D. EfficientPhys: Enabling Simple, Fast and Accurate Camera-Based Cardiac Measurement. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023; pp. 5008–5017. [Google Scholar]
- Liu, L.; Xia, Z.; Zhang, X.; Peng, J.; Feng, X.; Zhao, G. Information-Enhanced Network for Noncontact Heart Rate Estimation from Facial Videos. In IEEE Transactions on Circuits and Systems for Video Technology; IEEE: Toulouse, France, 2023; p. 1. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, Z.; Dai, J.; Liu, L.; Peng, J.; Feng, X. MSDN: A Multistage Deep Network for Heart-Rate Estimation from Facial Videos. IEEE Trans. Instrum. Meas. 2023, 72, 1–15. [Google Scholar] [CrossRef]
- Cho, Y.; Julier, S.J.; Marquardt, N.; Bianchi-Berthouze, N. Robust Tracking of Respiratory Rate in High-Dynamic Range Scenes Using Mobile Thermal Imaging. Biomed. Opt. Express 2017, 8, 4480–4503. [Google Scholar] [CrossRef] [PubMed]
- Tonacci, A.; Billeci, L.; Burrai, E.; Sansone, F.; Conte, R. Comparative Evaluation of the Autonomic Response to Cognitive and Sensory Stimulations through Wearable Sensors. Sensors 2019, 19, 4661. [Google Scholar] [CrossRef] [PubMed]
- Birkett, M.A. The Trier Social Stress Test Protocol for Inducing Psychological Stress. J. Vis. Exp. JoVE 2011, 56, 3238. [Google Scholar] [CrossRef]
- Cho, Y.; Julier, S.J.; Bianchi-Berthouze, N. Instant Stress: Detection of Perceived Mental Stress through Smartphone Photoplethysmography and Thermal Imaging. JMIR Ment. Health 2019, 6, e10140. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.T.; Narain, J.; Ferguson, C.; Picard, R.; Maes, P. The ECHOS Platform to Enhance Communication for Nonverbal Children with Autism: A Case Study. In Proceedings of the Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, CHI EA’20, New York, NY, USA, 25–30 April 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Casado, C.Á.; López, M.B. Face2PPG: An Unsupervised Pipeline for Blood Volume Pulse Extraction from Faces. IEEE J. Biomed. Health Inform. 2023, 27, 5530–5541. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.; Murray, A. Effects of Filtering on Multisite Photoplethysmography Pulse Waveform Characteristics. In Proceedings of the Computers in Cardiology, Chicago, IL, USA, 19–22 September 2004; pp. 485–488. [Google Scholar] [CrossRef]
- Patterson, J.A.; McIlwraith, D.C.; Yang, G.Z. A Flexible, Low Noise Reflective PPG Sensor Platform for Ear-Worn Heart Rate Monitoring. In Proceedings of the 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, 3–5 June 2009; pp. 286–291. [Google Scholar] [CrossRef]
- Lindberg, L.G.; Öberg, P.Å. Photoplethysmography. Med. Biol. Eng. Comput. 1991, 29, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.H.; Yuan, P.J.; Lin, K.P.; Chang, H.H.; Tsai, C.L. Analysis of Reflectance Photoplethysmograph Sensors. Int. J. Biomed. Biol. Eng. 2011, 5, 622–625. [Google Scholar]
- Elgendi, M. Optimal Signal Quality Index for Photoplethysmogram Signals. Bioengineering 2016, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Sukor, J.A.; Redmond, S.J.; Lovell, N.H. Signal Quality Measures for Pulse Oximetry through Waveform Morphology Analysis. Physiol. Meas. 2011, 32, 369. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Li, D.; Ma, X.; Teng, G.; Wei, J. PQR Signal Quality Indexes: A Method for Real-Time Photoplethysmogram Signal Quality Estimation Based on Noise Interferences. Biomed. Signal Process. Control 2019, 47, 88–95. [Google Scholar] [CrossRef]
- Goh, C.H.; Tan, L.K.; Lovell, N.H.; Ng, S.C.; Tan, M.P.; Lim, E. Robust PPG Motion Artifact Detection Using a 1-D Convolution Neural Network. Comput. Methods Programs Biomed. 2020, 196, 105596. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Wu, X.; Shi, C.; Gao, Q.; Geng, J. A LSTM-Based Realtime Signal Quality Assessment for Photoplethysmogram and Remote Photoplethysmogram. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 3831–3840. [Google Scholar]
- Roh, D.; Shin, H. Recurrence Plot and Machine Learning for Signal Quality Assessment of Photoplethysmogram in Mobile Environment. Sensors 2021, 21, 2188. [Google Scholar] [CrossRef] [PubMed]
- Desquins, T.; Bousefsaf, F.; Pruski, A.; Maaoui, C. A Survey of Photoplethysmography and Imaging Photoplethysmography Quality Assessment Methods. Appl. Sci. 2022, 12, 9582. [Google Scholar] [CrossRef]
- Moscato, S.; Lo Giudice, S.; Massaro, G.; Chiari, L. Wrist Photoplethysmography Signal Quality Assessment for Reliable Heart Rate Estimate and Morphological Analysis. Sensors 2022, 22, 5831. [Google Scholar] [CrossRef] [PubMed]
- Shin, H. Deep Convolutional Neural Network-Based Signal Quality Assessment for Photoplethysmogram. Comput. Biol. Med. 2022, 145, 105430. [Google Scholar] [CrossRef] [PubMed]
- Feli, M.; Azimi, I.; Anzanpour, A.; Rahmani, A.M.; Liljeberg, P. An Energy-Efficient Semi-Supervised Approach for on-Device Photoplethysmogram Signal Quality Assessment. Smart Health 2023, 28, 100390. [Google Scholar] [CrossRef]
- Pereira, T.; Ding, C.; Gadhoumi, K.; Tran, N.; Colorado, R.A.; Meisel, K.; Hu, X. Deep Learning Approaches for Plethysmography Signal Quality Assessment in the Presence of Atrial Fibrillation. Physiol. Meas. 2019, 40, 125002. [Google Scholar] [CrossRef] [PubMed]
- Reiss, A.; Indlekofer, I.; Schmidt, P.; Van Laerhoven, K. Deep PPG: Large-Scale Heart Rate Estimation with Convolutional Neural Networks. Sensors 2019, 19, 3079. [Google Scholar] [CrossRef]
- Schmidt, P.; Reiss, A.; Duerichen, R.; Marberger, C.; Van Laerhoven, K. Introducing WESAD, a Multimodal Dataset for Wearable Stress and Affect Detection. In Proceedings of the 20th ACM International Conference on Multimodal Interaction, ICMI ’18, New York, NY, USA, 16–20 October 2018; pp. 400–408. [Google Scholar] [CrossRef]
- Stark, Z. Chengstark, Segade, 2024. Available online: https://github.com/chengstark/Segade (accessed on 10 May 2023).
- Py-Feat: Python Facial Expression Analysis Toolbox—Py-Feat. Available online: https://py-feat.org/pages/intro.html# (accessed on 12 September 2023).
- Deng, J.; Guo, J.; Ververas, E.; Kotsia, I.; Zafeiriou, S. RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 5203–5212. [Google Scholar]
- Li, X.; Alikhani, I.; Shi, J.; Seppanen, T.; Junttila, J.; Majamaa-Voltti, K.; Tulppo, M.; Zhao, G. The OBF Database: A Large Face Video Database for Remote Physiological Signal Measurement and Atrial Fibrillation Detection. In Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018; pp. 242–249. [Google Scholar] [CrossRef]
- Hendrycks, D.; Mu, N.; Cubuk, E.D.; Zoph, B.; Gilmer, J.; Lakshminarayanan, B. AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty. arXiv 2020, arXiv:1912.02781. [Google Scholar] [CrossRef]
- Pytorchvideo.Transforms—PyTorchVideo Documentation. Available online: https://pytorchvideo.readthedocs.io/en/latest/api/transforms/transforms.html (accessed on 20 November 2020).
- Orphanidou, C.; Bonnici, T.; Charlton, P.; Clifton, D.; Vallance, D.; Tarassenko, L. Signal-Quality Indices for the Electrocardiogram and Photoplethysmogram: Derivation and Applications to Wireless Monitoring. IEEE J. Biomed. Health Inform. 2015, 19, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Narayanswamy, G.; Paruchuri, A.; Zhang, X.; Tang, J.; Zhang, Y.; Sengupta, R.; Patel, S.; Wang, Y.; McDuff, D. rPPG-Toolbox: Deep Remote PPG Toolbox. Adv. Neural Inf. Process. Syst. 2024, 36, 152. [Google Scholar]
- Deividbotina-Alv/Rtrppg: Python Implementation of the 3DCNN-based Real-Time rPPG Network (RTrPPG). Available online: https://github.com/deividbotina-alv/rtrppg (accessed on 14 September 2023).
- Yu, Z.; Peng, W.; Li, X.; Hong, X.; Zhao, G. Remote Heart Rate Measurement from Highly Compressed Facial Videos: An End-to-End Deep Learning Solution with Video Enhancement. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 151–160. [Google Scholar]
- Joshi, J.; Bianchi-Berthouze, N.; Cho, Y. Self-Adversarial Multi-scale Contrastive Learning for Semantic Segmentation of Thermal Facial Images. In Proceedings of the 33rd British Machine Vision Conference 2022, London, UK, 21–24 November 2022; p. 864. [Google Scholar]
- Yu, Z.; Li, X.; Niu, X.; Shi, J.; Zhao, G. AutoHR: A Strong End-to-End Baseline for Remote Heart Rate Measurement with Neural Searching. IEEE Signal Process. Lett. 2020, 27, 1245–1249. [Google Scholar] [CrossRef]
Dataset | Modality | Subjects | Tasks | Duration (min) | Varying Illumination | SQ Labels | Resolution | Compression | FPS | Free Access |
---|---|---|---|---|---|---|---|---|---|---|
PURE [8] | RGB | 10 | S, M, T | 60 | Y | N | 640 × 480 | None | 30 | Yes |
OBF * [70] | RGB, NIR | 106 | M | 1000 | N | N | 640 × 480 | None | 30 | No |
MANHOB-HCI [7] | RGB | 27 | E | 350 | N | N | 1040 × 1392 | None | 24 | Yes |
MMSE-HR [9] | RGB, 3D Thermal | 40 | E | 935 | N | N | RGB: 1040 × 1392; Thermal: 640 × 480 | None | 25 | No |
VIPL-HR [10] | RGB, NIR | 107 | S, M, T | 1235 | Y | N | Face-cropped | MJPG | 25 | Yes |
UBFC-rPPG [11] | RGB | 43 | S, C | 86 | Y | N | 640 × 480 | None | 30 | Yes |
UBFC-Phys [12] | RGB | 56 | S, C, T | 504 | N | N | 1024 × 1024 | JPEG | 35 | Yes |
iBVP (Ours) | RGB, Thermal | 32 | B, C, M | 381 | N | Y | RGB: 640 × 480; Thermal: 640 × 512 | None | 30 | Yes |
3D CNN Models | MACC (Avg) | SNR (Avg) | RMSE (HR) | Corr (HR) |
---|---|---|---|---|
PhysNet3D [35] | 0.781 | 0.511 | 4.283 | 0.848 |
RTrPPG [38] | 0.702 | 0.283 | 6.901 | 0.704 |
iBVPNet (ours) | 0.784 | 0.677 | 2.717 | 0.813 |
Unsupervised Models |
MAE (HR) |
RMSE (HR) |
Corr (HR) |
SNR (BVP) |
MACC (BVP) |
Supervised Models (Trained on PURE [8]) |
MAE (HR) |
RMSE (HR) |
Corr (HR) |
SNR (BVP) |
MACC (BVP) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ICA [24] | 10.25 | 14.11 | 0.10 | −9.10 | 0.25 | DeepPhys [29] | 7.93 | 11.96 | 0.40 | −8.04 | 0.34 | |
GREEN [2] | 11.84 | 15.85 | 0.15 | −10.18 | 0.22 | TS-CAN [30] | 6.68 | 10.27 | 0.36 | −7.70 | 0.36 | |
CHROM [25] | 4.18 | 8.33 | 0.56 | −4.94 | 0.46 | PhysNet3D [35] | 4.85 | 8.69 | 0.56 | −4.59 | 0.44 | |
POS [27] | 3.51 | 6.98 | 0.71 | −4.57 | 0.47 | PhysFormer [39] | 8.05 | 13.07 | −0.02 | −8.32 | 0.34 | |
LGI [28] | 6.08 | 11.23 | 0.41 | −6.38 | 0.39 | EfficientPhys [41] | 5.06 | 9.23 | 0.65 | −6.15 | 0.44 | |
PBV [26] | 9.94 | 14.47 | 0.23 | −8.74 | 0.27 | IBVPNet (ours) | 3.60 | 6.94 | 0.71 | −3.35 | 0.50 |
3D CNN Models | MACC (Avg) | SNR (Avg) | RMSE (HR) | Corr (HR) |
---|---|---|---|---|
PhysNet3D [35] | 0.360 | −0.135 | 6.339 | −0.019 |
iBVPNet (ours) | 0.413 | 0.159 | 5.400 | 0.095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, J.; Cho, Y. iBVP Dataset: RGB-Thermal rPPG Dataset with High Resolution Signal Quality Labels. Electronics 2024, 13, 1334. https://doi.org/10.3390/electronics13071334
Joshi J, Cho Y. iBVP Dataset: RGB-Thermal rPPG Dataset with High Resolution Signal Quality Labels. Electronics. 2024; 13(7):1334. https://doi.org/10.3390/electronics13071334
Chicago/Turabian StyleJoshi, Jitesh, and Youngjun Cho. 2024. "iBVP Dataset: RGB-Thermal rPPG Dataset with High Resolution Signal Quality Labels" Electronics 13, no. 7: 1334. https://doi.org/10.3390/electronics13071334
APA StyleJoshi, J., & Cho, Y. (2024). iBVP Dataset: RGB-Thermal rPPG Dataset with High Resolution Signal Quality Labels. Electronics, 13(7), 1334. https://doi.org/10.3390/electronics13071334