Reliability Research on Quantum Neural Networks
Abstract
:1. Introduction
2. Qubit Neural Network
Qubit Neuron Model
3. Reliability Analysis of Quantum Neural Networks
3.1. Factors Affecting the Reliability of Quantum Neural Networks
3.2. Reliability Analysis
4. Reliability Verification of Quantum Neural Networks
4.1. Design of an Experimental Scheme for Reliability Verification
4.2. Analysis of the Experimental Results of the Reliability Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kak, S. On quantum neural computing. Inf. Sci. 1995, 83, 143–160. [Google Scholar] [CrossRef]
- Li, P.; Xiao, H. Model and algorithm of quantum-inspired neural network with sequence input based on controlled rotation gates. Appl. Intell. 2014, 40, 107–126. [Google Scholar] [CrossRef]
- Li, Z.; Li, P. Quantum-inspired neural network with sequence input. Open J. Appl. Sci. 2015, 5, 259. [Google Scholar] [CrossRef]
- Xuan, H. Research on quantum adaptive resonance theory neural network. In Proceedings of the 2011 International Conference on Electronic & Mechanical Engineering and Information Technology, Harbin, China, 12–14 August 2011; IEEE: Piscataway, NJ, USA, 2011; Volume 8, pp. 3885–3888. [Google Scholar]
- Liu, C.Y.; Chen, C.; Chang, C.T.; Shih, L.M. Single-hidden-layer feed-forward quantum neural network based on Grover learning. Neural Netw. 2013, 45, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Behrman, E.C.; Steck, J.E. A quantum neural network computes its own relative phase. In Proceedings of the 2013 IEEE Symposium on Swarm Intelligence (SIS), Singapore, 16–19 April 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 119–124. [Google Scholar]
- Purushothaman, G.; Karayiannis, N.B. Quantum neural networks (QNNs): Inherently fuzzy feedforward neural networks. IEEE Trans. Neural Netw. 1997, 8, 679–693. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Yuan, C. Analysis of quantum neural network learning ability. Appl. Math. 2013, 7, 679–683. [Google Scholar] [CrossRef]
- Ventura, D.; Martinez, T. An Artificial Neuron with Quantum Mechanical Properties. In Artificial Neural Nets and Genetic Algorithms; Springer: Vienna, Austria, 1998. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.H.; Shao, C.P.; Wu, Y.C.; Guo, G.C.; Guo, G.P. Building quantum neural networks based on a swap test. Phys. Rev. A 2019, 100, 012334. [Google Scholar] [CrossRef]
- Houssein, E.H.; Abohashima, Z.; Elhoseny, M.; Mohamed, W.M. Hybrid quantum convolutional neural networks model for COVID-19 prediction using chest X-Ray images. arXiv 2021, arXiv:2102.06535. [Google Scholar] [CrossRef]
- Liu, G.; Ma, W. A quantum artificial neural network for stock closing price prediction. Inf. Sci. 2022, 598, 75–85. [Google Scholar] [CrossRef]
- Yan, P.; Li, L.; Jin, M.; Zeng, D. Quantum probability-inspired graph neural network for document representation and classification. Neurocomputing 2021, 445, 276–286. [Google Scholar] [CrossRef]
- Matsui, N.; Nishimura, H.; Isokawa, T. Qubit neural network: Its performance and applications. In Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters; IGI Global: Hershey, PA, USA, 2009; pp. 325–351. [Google Scholar]
- Kouda, N.; Matsui, N.; Nishimura, H. Image compression by layered quantum neural networks. Neural Process. Lett. 2002, 16, 67–80. [Google Scholar] [CrossRef]
- da Silva, A.J.; Ludermir, T.B.; de Oliveira, W.R. Quantum perceptron over a field and neural network architecture selection in a quantum computer. Neural Netw. 2016, 76, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Fard, E.R.; Aghayar, K.; Amniat-Talab, M. Quantum pattern recognition with multi-neuron interactions. Quantum Inf. Process. 2018, 17, 42. [Google Scholar] [CrossRef]
- Li, P.; Wang, B. Quantum neural networks model based on swap test and phase estimation. Neural Netw. 2020, 130, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Matsui, N.; Takai, M.; Nishimura, H. A network model based on qubitlike neuron corresponding to quantum circuit. Electron. Commun. Jpn. Part III Fundam. Electron. Sci. 2000, 83, 67–73. [Google Scholar] [CrossRef]
- Kouda, N.; Matsui, N.; Nishimura, H. Learning performance of neuron model based on quantum superposition. In Proceedings of the 9th IEEE International Workshop on Robot and Human Interactive Communication. IEEE RO-MAN 2000 (Cat. No. 00TH8499), Osaka, Japan, 27–29 September 2000; IEEE: Piscataway, NJ, USA, 2000; pp. 112–117. [Google Scholar]
- Matsui, N.; Kouda, N.; Nishimura, H. Neural network based on QBP and its performance. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, Como, Italy, 27 July 2000; IEEE: Piscataway, NJ, USA, 2000; Volume 3, pp. 247–252. [Google Scholar]
- Kouda, N.; Matsui, N.; Nishimura, H.; Peper, F. Qubit neural network and its efficiency. In Proceedings of the Knowledge-Based Intelligent Information and Engineering Systems: 7th International Conference, KES 2003, Oxford, UK, 3–5 September 2003; Proceedings, Part II 7. Springer: Berlin/Heidelberg, Germany, 2003; pp. 304–310. [Google Scholar]
- Kouda, N.; Matsui, N.; Nishimura, H. A multilayered feed-forward network based on qubit neuron model. Syst. Comput. Jpn. 2004, 35, 43–51. [Google Scholar] [CrossRef]
- DiVincenzo, D.P. Quantum computation. Science 1995, 270, 255–261. [Google Scholar] [CrossRef]
- Majumder, S.; Kutum, R.; Khatua, D.; Sekh, A.A.; Kar, S.; Mukerji, M.; Prasher, B. On Intelligent Prakriti Assessment in Ayurveda: A Comparative Study. J. Intell. Fuzzy Syst. 2023, 45, 9827–9844. [Google Scholar] [CrossRef]
Input State | Output State | Fidelity |
---|---|---|
(0.37130919062752576 − 0.9285092807985207j) (1.995967198215043 × 10−5 + 5.306337058308408 × 10−6j) | Approximately equal to 1 | |
(6.778891857961433 × 10−6 + 2.684974533762041 × 10−6j) (−0.37128647139550186 + 0.9285183660571905j) | Approximately equal to 1 | |
In particular, when , the corresponding final state measurement value is ; When , the corresponding final state measurement value is . | The amplitude of the final state measurements and is consistent with the amplitude of the input state |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Lu, H. Reliability Research on Quantum Neural Networks. Electronics 2024, 13, 1514. https://doi.org/10.3390/electronics13081514
Zhang Y, Lu H. Reliability Research on Quantum Neural Networks. Electronics. 2024; 13(8):1514. https://doi.org/10.3390/electronics13081514
Chicago/Turabian StyleZhang, Yulu, and Hua Lu. 2024. "Reliability Research on Quantum Neural Networks" Electronics 13, no. 8: 1514. https://doi.org/10.3390/electronics13081514
APA StyleZhang, Y., & Lu, H. (2024). Reliability Research on Quantum Neural Networks. Electronics, 13(8), 1514. https://doi.org/10.3390/electronics13081514