Developing a Prototype Device for Assessing Meat Quality Using Autofluorescence Imaging and Machine Learning Techniques
Abstract
:1. Introduction
2. Methods
2.1. Sample Preparation
2.2. Spectral Analysis
2.3. Prototype Instrumentation Design
2.4. Image Acquisition
2.5. Image Analysis
3. Results and Discussion
3.1. Masking after Excluding the Connective Tissue
3.2. Feature Selection
3.3. Pairwise Classification and Validation
3.4. Feature Selection for Multi-Classifier Models and Model Tuning
3.5. Validating the Multi-Classifier Model with a Set of Blind Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitnall, T.; Pitts, N. Meat Consumption. 2020. Available online: https://www.agriculture.gov.au/abares/research-topics/agricultural-outlook/meat-consumption (accessed on 5 March 2021).
- Font-i-Furnols, M.; Guerrero, L. Consumer preference, behavior and perception about meat and meat products: An overview. Meat Sci. 2014, 98, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Yates-Doerr, E. Meeting the demand for meat? Anthropol. Today 2012, 28, 11–15. [Google Scholar] [CrossRef]
- Novaković, S.; Tomašević, I. A comparison between Warner-Bratzler shear force measurement and texture profile analysis of meat and meat products: A review. IOP Conf. Ser. Earth Environ. Sci. 2017, 85, 012063. [Google Scholar] [CrossRef]
- Font-i-Furnols, M.; Čandek-Potokar, M.; Maltin, C.; Prevolnik Povše, M. A Handbook of Reference Methods for Meat Quality Assessment; European Cooperation in Science and Technology (COST): Brussels, Belgium, 2015. [Google Scholar]
- Caine, W.; Aalhus, J.; Best, D.; Dugan, M.; Jeremiah, L. Relationship of texture profile analysis and Warner-Bratzler shear force with sensory characteristics of beef rib steaks. Meat Sci. 2003, 64, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Egelandsdal, B.; Wold, J.P.; Sponnich, A.; Neegård, S.; Hildrum, K.I. On attempts to measure the tenderness of Longissimus dorsi muscles using fluorescence emission spectra. Meat Sci. 2002, 60, 187–202. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.; Mahbub, S.B.; Clement, S.; Guller, A.; Anwer, A.G.; Goldys, E.M. Autofluorescence excitation-emission matrices as a quantitative tool for the assessment of meat quality. J. Biophotonics 2020, 13, e201900237. [Google Scholar] [CrossRef] [PubMed]
- Skjervold, P.; Taylor, R.G.; Wold, J.P.; Berge, P.; Abouelkaram, S.; Culioli, J.; Dufour, E. Development of intrinsic fluorescent multispectral imagery specific for fat, connective tissue, and myofibers in meat. J. Food Sci. 2003, 68, 1161–1168. [Google Scholar] [CrossRef]
- SádeCká, J.; TóThoVá, J. Fluorescence spectroscopy and chemometrics in the food classification—A review. Czech J. Food Sci. 2007, 25, 159. [Google Scholar] [CrossRef]
- Australia, M.L. The effect of marbling on beef eating quality. 2018, pp. 15–16. Available online: https://www.mla.com.au/globalassets/mla-corporate/marketing-beef-and-lamb/documents/meat-standards-australia/msa-beef-tt_full-info-kit-lr.pdf (accessed on 9 April 2024).
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bigas, M.; Cabruja, E.; Forest, J.; Salvi, J. Review of CMOS image sensors. Microelectron. J. 2006, 37, 433–451. [Google Scholar] [CrossRef]
- Köklü, G.; Ghaye, J.; Etienne-Cummings, R.; Leblebici, Y.; De Micheli, G.; Carrara, S. Empowering low-cost cmos cameras by image processing to reach comparable results with costly ccds. BioNanoScience 2013, 3, 403–414. [Google Scholar] [CrossRef]
- Genot, C.; Tonetti, F.; Montenay-Garestier, T.; Drapron, R. Front-face fluorescence applied to structural studies of proteins and lipid-protein interactions of visco-elastic food products. I: Designing of front-face adaptor and validity of front-face fluorescence measurements. Sci. Des Aliment. 1992, 12, 199–212. [Google Scholar]
- Parker, C.A. Photoluminescence of Solutions: With Applications to Photochemistry and Analytical Chemistry; Elsevier Publishing Company: Amsterdam, The Netherlands, 1968. [Google Scholar]
- Mellen, N.M.; Tuong, C.-M. Semi-automated region of interest generation for the analysis of optically recorded neuronal activity. Neuroimage 2009, 47, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Australia, M.S. This MLA’s Annual Report 2010–2011. (Meat & Livestock Australia, 2011). Available online: https://www.mla.com.au/globalassets/mla-corporate/generic/about-mla/anual-report-2010-11-final.pdf (accessed on 9 April 2024).
- Ng, A.Y.; Jordan, M.I. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. Adv. Neural Inf. Process. Syst. 2001, 14, 841–848. [Google Scholar]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Rokach, L. Ensemble-based classifiers. Artif. Intell. Rev. 2010, 33, 1–39. [Google Scholar] [CrossRef]
- Fix, E.; Hodges, J.L. Discriminatory analysis. Nonparametric discrimination: Consistency properties. Int. Stat. Rev. /Rev. Int. De Stat. 1989, 57, 238–247. [Google Scholar] [CrossRef]
- Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185. [Google Scholar] [CrossRef]
- Everitt, B.S.; Landau, S.; Leese, M.; Stahl, D. Cluster Analysis; John Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Hall, P.; Park, B.U.; Samworth, R.J. Choice of neighbor order in nearest-neighbor classification. Ann. Stat. 2008, 36, 2135–2152. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013; Volume 26. [Google Scholar]
- Auffarth, B.; López, M.; Cerquides, J. Comparison of redundancy and relevance measures for feature selection in tissue classification of ct images. In Industrial Conference on Data Mining; Springer: Berlin/Heidelberg, Germany, 2010; pp. 248–262. [Google Scholar]
- Raeisi Shahraki, H.; Pourahmad, S.; Zare, N. Important neighbors: A novel approach to binary classification in high dimensional data. BioMed Res. Int. 2017, 2017, 7560807. [Google Scholar] [CrossRef] [PubMed]
- Lantz, B. Machine Learning with R; Packt Publishing: Birmingham, UK; Mumbai, India, 2015. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, E.; Mahbub, S.B.; Goldys, E.M.; Clement, S. Developing a Prototype Device for Assessing Meat Quality Using Autofluorescence Imaging and Machine Learning Techniques. Electronics 2024, 13, 1623. https://doi.org/10.3390/electronics13091623
Zhou E, Mahbub SB, Goldys EM, Clement S. Developing a Prototype Device for Assessing Meat Quality Using Autofluorescence Imaging and Machine Learning Techniques. Electronics. 2024; 13(9):1623. https://doi.org/10.3390/electronics13091623
Chicago/Turabian StyleZhou, Eric, Saabah B. Mahbub, Ewa M. Goldys, and Sandhya Clement. 2024. "Developing a Prototype Device for Assessing Meat Quality Using Autofluorescence Imaging and Machine Learning Techniques" Electronics 13, no. 9: 1623. https://doi.org/10.3390/electronics13091623