Design and Implementation of Reconfigurable Array Adaptive Optoelectronic Hybrid Interconnect Shunting Network
Abstract
:1. Introduction
2. Overall Framework of Adaptive Optoelectronic Hybrid Interconnection and Shunting Network
3. Shunt Electrical Interconnect Layer
3.1. Routing Algorithm
3.2. Electric Router Structure
3.3. Algorithm Establishment Cycle and Delay Analysis
4. Optical Network Layer
4.1. Optical Network Architecture
4.2. Performance Analysis of Non-Blocking Five-Port Optical Router
4.3. Development of Optical Network Performance Evaluation Model
5. Performance Analysis of Shunt Network for Adaptive Optical Hybrid Interconnection
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Atabaki, A.H.; Moazeni, S.; Pavanello, F.; Gevorgyan, H.; Notaros, J.; Alloatti, L.; Wade, M.T.; Sun, C.; Kruger, S.A.; Meng, H.; et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 2018, 556, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Siew, S.Y.; Li, B.; Gao, F.; Zheng, H.Y.; Zhang, W.; Guo, P.; Xie, S.W.; Song, A.; Dong, B.; Luo, L.W.; et al. Review of silicon photonics technology and platform development. J. Light. Technol. 2021, 39, 4374–4389. [Google Scholar] [CrossRef]
- Hao, Y.; Xiang, S.; Han, G.; Zhang, J.; Ma, X.; Zhu, Z.; Guo, X.; Zhang, Y.; Han, Y.; Song, Z.; et al. Recent progress of integrated circuits and optoelectronic chips. Sci. China Inf. Sci. 2021, 64, 201401. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Q.; Liu, Y.; Jia, L.; Yu, M.; Sun, P.; Geng, F.; Cai, Y.; Tu, Z. Low-loss through silicon Vias (TSVs) and transmission lines for 3D optoelectronic integration. Microelectron. Eng. 2021, 238, 111509. [Google Scholar] [CrossRef]
- Cheng, Q.; Kwon, J.; Glick, M.; Bahadori, M.; Carloni, L.P.; Bergman, K. Silicon photonics codesign for deep learning. Proc. IEEE 2020, 108, 1261–1282. [Google Scholar] [CrossRef]
- Oveis-Gharan, M.; Khan, G.N. Reconfigurable on-chip interconnection networks for high performance embedded SoC design. J. Syst. Arch. 2020, 106, 101711. [Google Scholar] [CrossRef]
- Shan, R.; Jiang, L.; Wu, H.; He, F.; Liu, X. Dynamical Self-Reconfigurable Mechanism for Data-Driven Cell Array. J. Shanghai Jiaotong Univ. Sci. 2021, 26, 511–521. [Google Scholar] [CrossRef]
- Seetharaman, G.; Pati, D. Design of high performance HMRPD network on chip interconnect for neuromorphic architectures. In Proceedings of the 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies, Shillong, Meghalaya, India, 5–7 March 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Cheng, T.; Wu, N.; Yan, G.; Zhang, X.; Zhang, X. Poet: A Power Efficient Hybrid Optical NoC Topology for Heterogeneous CPU-GPU Systems. In Proceedings of the IECON 2019 45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; pp. 3091–3095. [Google Scholar]
- Parane, K.; Prasad, B.M.P.; Talawar, B. Design of an Adaptive and Reliable Network on Chip Router Architecture Using FPGA. In Proceedings of the 2019 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Lisbon, Portugal, 14–17 October 2019; pp. 1–4. [Google Scholar]
- Devadhas, D.N.P. Design of Priority Based Low Power Reconfigurable Router in Network on Chip. Inf. MIDEM 2019, 49, 203–210. [Google Scholar]
- Shafiei, F.; Sattari-Naeini, V. Development of an Adaptive Multipath Routing Algorithm by Examining the Congestion and Channel Fault of One-Hop Nodes in Network-on-Chip. In Proceedings of the 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 25–26 October 2018; pp. 231–236. [Google Scholar]
- Batcher. Design of a massively parallel processor. IEEE Trans. Comput. 1980, 100, 836–840. [Google Scholar]
- Aghaei, B.; Reshadi, M.; Masdari, M.; Sajadi, S.H.; Hosseinzadeh, M.; Darwesh, A. Network adapter architectures in network on chip: Comprehensive literature review. Clust. Comput. 2020, 23, 321–346. [Google Scholar] [CrossRef]
- Kim, J.; Pak, J.S.; Cho, J.; Song, E.; Cho, J.; Kim, H.; Song, T.; Lee, J.; Lee, H.; Park, K.; et al. High-frequency scalable electrical model and analysis of a through silicon via (TSV). IEEE Trans. Compon. Packag. Manuf. Technol. 2011, 1, 181–195. [Google Scholar]
- Khawam, S.; Nousias, I.; Milward, M.; Yi, Y.; Muir, M.; Arslan, T. The reconfigurable instruction cell array. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2007, 16, 75–85. [Google Scholar] [CrossRef]
- Patil, T.; Sandi, A. Design and implementation of asynchronous NOC architecture with buffer-less router. Mater. Today Proc. 2021, 49, 756–763. [Google Scholar] [CrossRef]
- Fard, E.S.; Jamali, M.A.J.; Masdari, M.; Majidzadeh, K. An efficient NoC router by optimal management of buffer read and write mechanism. Microprocess. Microsyst. 2022, 89, 104440. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, H.; Zhu, J.; Yan, Z.; Song, Y.; Liu, X. Design a reconfigurable router based on hybrid packet/circuit-switching for NoC. Microelectron. Comput. 2020, 37, 49–54. [Google Scholar]
- Madsen, J.; Mahadevan, S.; Virk, K.; Gonzalez, M. Network-on-chip modeling for system-level multiprocessor simulation. In Proceedings of the 24th IEEE International Real-Time Systems Symposium, Cancun, Mexico, 5 December 2003. [Google Scholar]
- Chawade, S.D.; Gaikwad, M.A.; Patrikar, R.M. Review of XY routing algorithm for network-on-chip architecture. Int. J. Comput. Appl. 2012, 43, 975–8887. [Google Scholar] [CrossRef]
- Yahya, M.R.; Wu, N.; Fang, Z.; Ge, F.; Shah, M.H. A low insertion loss 5 × 5 optical router for mesh photonic network-on-chip topology. In Proceedings of the 2019 IEEE Conference on Sustainable Utilization and Development in Engineering and Technologies (CSUDET), Penang, Malaysia, 7–9 November 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Rakshit, J.K.; Roy, J.N. Micro-ring resonator based all-optical reconfigurable logic operations. Opt. Commun. 2014, 321, 38–46. [Google Scholar] [CrossRef]
- Shi, X.; Wu, N.; Ge, F.; Yan, G.; Xing, Y.; Ma, X. Srax: A Low Crosstalk and Insertion Loss 5 × 5 Optical Router for Optical Network-on-Chip. In Proceedings of the IECON 2019 45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; pp. 3102–3105. [Google Scholar]
- Asadinia, S.; Mehrabi, M.; Yaghoubi, E. Surix: Non-blocking and low insertion loss micro-ring resonator-based optical router for photonic network on chip. J. Supercomput. 2020, 77, 4438–4460. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, Q.; Jin, X.; Zhao, J.; Baghsiahi, H.; Selviah, D.R. Microring resonator-based optical router for photonic networks-on-chip. Quantum Electron. 2016, 46, 655. [Google Scholar]
- Kumar, S.; Kumar, A.; Rana, V.; Sharma, V.; Bhatnagar, V.; Sachi, S. Network on Chip for 2D Mesh Toplological Structure in HDL Environment. In Proceedings of the 2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Gautam Buddha Nagar, India, 1–3 December 2023; IEEE: Piscataway, NJ, USA, 2023; Volume 10, pp. 475–480. [Google Scholar]
- Su, Y.; Xie, Y.; Song, T.; Ye, Y.; Fu, L.; Chai, J.; Li, L.; Liu, Y. A Novel Virtual-Cluster Based Architecture of Double-Layer Optical Networks-on-Chip. J. Light. Technol. 2020, 38, 3553–3562. [Google Scholar] [CrossRef]
- Zhang, B.; Gu, H.; Wang, K.; Yang, Y.; Ma, Z. OECS: A deep convolutional neural network accelerator based on a 3D hybrid optical-electrical NoC. J. Opt. Commun. Netw. 2023, 15, 839–853. [Google Scholar] [CrossRef]
- Zhu, S.; Huang, H.; Hu, Z.; Tian, Q. Design of handwritten digit recognition system based on FPGA. In Proceedings of the International Conference on Signal Image Processing and Communication (ICSIPC 2021), Chengdu, China, 1 June 2021; SPIE: Bellingham, WA, USA, 2021; Volume 11848, pp. 265–270. [Google Scholar]
- Chen, Y.; Xu, G.; Chen, L.; Gao, J. Research and FPGA Implementation of Convolutional Neural Network Accelerator. In Proceedings of the 2023 IEEE 6th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), Haikou, China, 18–20 August 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1057–1064. [Google Scholar]
- Wu, J.; Wang, Y.; Lu, L.; Chen, C.; Li, Z. A High-speed and Low-power FPGA Implementation of Spiking Convolutional Neural Network Using Logarithmic Quantization. In Proceedings of the 2023 19th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Harbin, China, 29–31 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–8. [Google Scholar]
- An, J.; Yuen, C.; Xu, C.; Li, H.; Ng, D.W.; Di Renzo, M.; Debbah, M.; Hanzo, L. Stacked intelligent metasurface-aided MIMO transceiver design. arXiv 2023, arXiv:2311.09814. [Google Scholar]
Router | Item | Used |
---|---|---|
Ref. [19] | Registers | 2473 |
LUT | 2476 | |
ViChaR [18] | Registers | 2038 |
LUT | 1180 | |
Ref. [17] | Registers | 744 |
LUT | 886 | |
EDVC F-R/W [18] | Registers | 865 |
LUT | 862 | |
CDVC [18] | Registers | 847 |
LUT | 1092 | |
This paper | Registers | 845 |
LUT | 865 |
Src/Dst | XY-DRA Block | ASRA Block | XY-DRA Path Establishment Period | ASRA Path Establishment Period | ASRA Micro-Ring Configuration Period |
---|---|---|---|---|---|
00-01 | N | N | 3.5 | 3.5 | - |
00-10 | Y | N | 7.5 | 4 | - |
00-20 | Y | N | 9.5 | 7 | 2 |
00-22 | Y | N | 17 | 9.5 | 4 |
00-33 | Y | N | 22.5 | 16.5 | 6.5 |
Out\In | N_in | S_in | W_in | E_in | Injection |
---|---|---|---|---|---|
N_out | — | NO | MR4 | MR3 | MR5 |
S_out | NO | — | MR2 | MR1 | MR8 |
W_out | MR1 | MR3 | — | NO | MR7 |
E_out | MR2 | MR4 | NO | — | MR6 |
Ejection | MR8 | MR5 | MR10 | MR9 | NO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Li, Y.; Xi, C.; Shan, R.; Feng, Y.; Luo, J. Design and Implementation of Reconfigurable Array Adaptive Optoelectronic Hybrid Interconnect Shunting Network. Electronics 2024, 13, 1668. https://doi.org/10.3390/electronics13091668
Yang B, Li Y, Xi C, Shan R, Feng Y, Luo J. Design and Implementation of Reconfigurable Array Adaptive Optoelectronic Hybrid Interconnect Shunting Network. Electronics. 2024; 13(9):1668. https://doi.org/10.3390/electronics13091668
Chicago/Turabian StyleYang, Bowen, Yong Li, Chao Xi, Rui Shan, Yu Feng, and Jiaying Luo. 2024. "Design and Implementation of Reconfigurable Array Adaptive Optoelectronic Hybrid Interconnect Shunting Network" Electronics 13, no. 9: 1668. https://doi.org/10.3390/electronics13091668
APA StyleYang, B., Li, Y., Xi, C., Shan, R., Feng, Y., & Luo, J. (2024). Design and Implementation of Reconfigurable Array Adaptive Optoelectronic Hybrid Interconnect Shunting Network. Electronics, 13(9), 1668. https://doi.org/10.3390/electronics13091668