Enhanced Vascular Bifurcations Mapping: Refining Fundus Image Registration
Abstract
:1. Introduction
2. Related Work
3. Proposed Method
3.1. Flowchart Description
3.2. Feature Extraction
3.3. Feature Matching
3.4. Transformation Matrix Computation
3.5. Image Blending
4. Experimental Results
4.1. Datasets
4.2. Evaluation Metrics
4.3. Segmentation Performance
4.4. Feature Extraction and Feature Description
4.5. Registration Performance on the FIRE Dataset
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, T.; Bo, W.; Hu, C.; Kang, H.; Liu, H.; Wang, K.; Fu, H. Applications of deep learning in fundus images: A review. Med. Image Anal. 2021, 69, 101971. [Google Scholar] [CrossRef] [PubMed]
- Ramli, R.; Hasikin, K.; Idris, M.Y.I.; AKarim, N.K.; Wahab, A.W.A. Fundus image registration technique based on local feature of retinal vessels. Appl. Sci. 2021, 11, 11201. [Google Scholar] [CrossRef]
- Ramli, R.; Idris, M.Y.I.; Hasikin, K.; AKarim, N.K.; Abdul Wahab, A.W.; Ahmedy, I.; Ahmedy, F.; Kadri, N.A.; Arof, H. Feature-based retinal image registration using D-Saddle feature. J. Healthc. Eng. 2017, 2017, 1489524. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Rahaman, G.A.; Islam, T.; Akter, M.; Frost, S.; Kanagasingam, Y. Retinal image registration using log-polar transform and robust description of bifurcation points. Biomed. Signal Process. Control 2021, 66, 102424. [Google Scholar] [CrossRef]
- Akram, M.U.; Usmani, D.; Ahmad, T.; Abbas, S.; Noor, S.F. Seamless fundus image stitching using wld to improve field of view. In Proceedings of the 2015 Fifth International Conference on Digital Information and Communication Technology and its Applications (DICTAP), Beirut, Lebano, 29 April–1 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 106–110. [Google Scholar]
- Lucente, A.; Taloni, A.; Scorcia, V.; Giannaccare, G. Widefield and Ultra-Widefield Retinal Imaging: A Geometrical Analysis. Life 2023, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Toslak, D.; Thapa, D.; Chen, Y.; Erol, M.K.; Chan, R.P.; Yao, X. Trans-palpebral illumination: An approach for wide-angle fundus photography without the need for pupil dilation. Opt. Lett. 2016, 41, 2688–2691. [Google Scholar] [CrossRef] [PubMed]
- Das, V.; Dandapat, S.; Bora, P.K. A novel diagnostic information based framework for super-resolution of retinal fundus images. Comput. Med Imaging Graph. 2019, 72, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Astorga, J.E.; Wang, L.; Du, W.; Peng, Y. A Straightforward Bifurcation Pattern-Based Fundus Image Registration Method. Sensors 2023, 23, 7809. [Google Scholar] [CrossRef] [PubMed]
- Astorga, J.E.O.; Du, W.; Peng, Y.; Wang, L. Fundus Image Registration with Binary Morphology Extraction of Feature Points. In Proceedings of the 2023 Sixth International Symposium on Computer, Consumer and Control (IS3C), Taichung, Taiwan, 30 June–3 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 182–185. [Google Scholar]
- Frangi, A.F.; Niessen, W.J.; Vincken, K.L.; Viergever, M.A. Multiscale vessel enhancement filtering. In Medical Image Computing and Computer-Assisted Intervention—MICCAI’98, Proceedings of the First International Conference Cambridge, MA, USA, 11–13 October 1998; Proceedings 1; Springer: Berlin/Heidelberg, Germany, 1998; pp. 130–137. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Zai, S.; Abbas, A. An effective enhancement and segmentation of coronary arteries in 2d angiograms. In Proceedings of the 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE), Shah Alam, Malaysia, 11–12 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Alahi, A.; Ortiz, R.; Vandergheynst, P. Freak: Fast retina keypoint. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 510–517. [Google Scholar]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Jin, K.; Huang, X.; Zhou, J.; Li, Y.; Yan, Y.; Sun, Y.; Zhang, Q.; Wang, Y.; Ye, J. Fives: A fundus image dataset for artificial Intelligence based vessel segmentation. Sci. Data 2022, 9, 475. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Matas, C.; Zabulis, X.; Triantafyllou, A.; Anyfanti, P.; Douma, S.; Argyros, A.A. FIRE: Fundus image registration dataset. Model. Artif. Intell. Ophthalmol. 2017, 1, 16–28. [Google Scholar] [CrossRef]
- Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; IEEE: Piscataway, NJ, USA, 1999. [Google Scholar]
- Jalili, J.; Hejazi, S.M.; Riazi-Esfahani, M.; Eliasi, A.; Ebrahimi, M.; Seydi, M.; Fard, M.A.; Ahmadian, A. Retinal image mosaicking using scale-invariant feature transformation feature descriptors and Voronoi diagram. J. Med. Imaging 2020, 7, 044001. [Google Scholar]
- Hernandez-Matas, C.; Zabulis, X.; Argyros, A.A. REMPE: Registration of retinal images through eye modelling and pose estimation. IEEE J. Biomed. Health Inform. 2020, 24, 3362–3373. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Brunton, S.L.; Schowengerdt, B.T.; Seibel, E.J. Intensity-mosaic: Automatic panorama mosaicking of disordered images with insufficient features. J. Med. Imaging 2021, 8, 054002. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Villar, D.; Hervella, Á.S.; Rouco, J.; Novo, J. Color fundus image registration using a learning-based domain-specific landmark detection methodology. Comput. Biol. Med. 2022, 140, 105101. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, J.; An, C.; Cavichini, M.; Jhingan, M.; Amador-Patarroyo, M.J.; Long, C.P.; Bartsch, D.U.G.; Freeman, W.R.; Nguyen, T.Q. A segmentation based robust deep learning framework for multimodal retinal image registration. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1369–1373. [Google Scholar]
- Zana, F.; Klein, J.C. Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 2001, 10, 1010–1019. [Google Scholar] [CrossRef]
- Zana, F.; Klein, J.C. A multimodal registration algorithm of eye fundus images using vessels detection and Hough transform. IEEE Trans. Med. Imaging 1999, 18, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Cai, G.; Gou, X.; Yun, Z.; Wang, W.; Yang, W. Retinal mosaicking with vascular bifurcations detected on vessel mask by a convolutional network. J. Healthc. Eng. 2020, 2020, 7156408. [Google Scholar] [CrossRef] [PubMed]
- Pratt, H.; Williams, B.M.; Ku, J.Y.; Vas, C.; McCann, E.; Al-Bander, B.; Zhao, Y.; Coenen, F.; Zheng, Y. Automatic detection and distinction of retinal vessel bifurcations and crossings in colour fundus photography. J. Imaging 2017, 4, 4. [Google Scholar] [CrossRef]
- Chaichana, T.; Sun, Z.; Barrett-Baxendale, M.; Nagar, A. Automatic location of blood vessel bifurcations in digital eye fundus images. In Proceedings of the Sixth International Conference on Soft Computing for Problem Solving: SocProS 2016; Springer: Singapore, 2017; Volume 2, pp. 332–342. [Google Scholar]
- Patwari, M.B.; Manza, R.R.; Rajput, Y.M.; Deshpande, N.K.; Saswade, M. Extraction of the retinal blood vessels and detection of the bifurcation points. Int. J. Comput. Appl. 2013, 77, 29–34. [Google Scholar]
- Patwari, M.B.; Manza, R.R.; Rajput, Y.M.; Saswade, M.; Deshpande, N. Personal identification algorithm based on retinal blood vessels bifurcation. In Proceedings of the 2014 International Conference on Intelligent Computing Applications, Coimbatore, India, 6–7 March 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 203–207. [Google Scholar]
- Sutanty, E.; Rahayu, D.A.; Susetianingtias, D.T.; Madenda, S. Retinal blood vessel segmentation and bifurcation detection using combined filters. In Proceedings of the 2017 3rd International Conference on Science in Information Technology (ICSITech), Bandung, Indonesia, 25–26 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 563–567. [Google Scholar]
- Dharmawan, D.A.; Li, D.; Ng, B.P.; Rahardja, S. A new hybrid algorithm for retinal vessels segmentation on fundus images. IEEE Access 2019, 7, 41885–41896. [Google Scholar] [CrossRef]
- Staal, J.; Abràmoff, M.D.; Niemeijer, M.; Viergever, M.A.; Van Ginneken, B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 2004, 23, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Hoover, A.D.; Kouznetsova, V.; Goldbaum, M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 2000, 19, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Odstrcilik, J.; Kolar, R.; Budai, A.; Hornegger, J.; Jan, J.; Gazarek, J.; Kubena, T.; Cernosek, P.; Svoboda, O.; Angelopoulou, E. Retinal vessel segmentation by improved matched filtering: Evaluation on a new high-resolution fundus image database. IET Image Process. 2013, 7, 373–383. [Google Scholar] [CrossRef]
- Tang, Y.; Rui, Z.; Yan, C.; Li, J.; Hu, J. ResWnet for retinal small vessel segmentation. IEEE Access 2020, 8, 198265–198274. [Google Scholar] [CrossRef]
- Guo, C.; Szemenyei, M.; Yi, Y.; Xue, Y.; Zhou, W.; Li, Y. Dense residual network for retinal vessel segmentation. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1374–1378. [Google Scholar]
- Liu, X.; Song, L.; Liu, S.; Zhang, Y. A review of deep-learning-based medical image segmentation methods. Sustainability 2021, 13, 1224. [Google Scholar] [CrossRef]
- Divyashree, N.; Pushpalatha, K.N. A Review on Gradient Histograms for Texture Enhancement and Object Detection. Int. Reserach J. Eng. Technol. (IRJET) 2020, 7, 3. [Google Scholar]
- You, X.; Fang, B.; He, Z.; Tang, Y.Y. A global-to-local matching strategy for registering retinal fundus images. In Pattern Recognition and Image Analysis, Proceedings of the Second Iberian Conference, IbPRIA 2005, Estoril, Portugal, 7–9 June 2005; Proceedings, Part I 2; Springer: Berlin/Heidelberg, Germany, 2005; pp. 259–267. [Google Scholar]
- Astorga, J.E.O.; Wang, L.; Yamada, S.; Fujiwara, Y.; Du, W.; Peng, Y. Automatic Detection of Microaneurysms in Fundus Images. Int. J. Softw. Innov. (IJSI) 2023, 11, 1–14. [Google Scholar] [CrossRef]
- Zuiderveld, K. Contrast Limited Adaptive Histogram Equalization; Graphics gem; Heckbert, P.S., Ed.; Academic: New York, NY, USA, 1994; pp. 474–485. [Google Scholar]
- Wang, C.; Zhao, Z.; Ren, Q.; Xu, Y.; Yu, Y. Dense U-net based on patch-based learning for retinal vessel segmentation. Entropy 2019, 21, 168. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Zhang, Z.; Niu, X.; Zhang, Y.; Cao, C.; Xiao, F.; Gao, X. Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 2018, 309, 179–191. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Suen, C.Y. A fast parallel algorithm for thinning digital patterns. Commun. ACM 1984, 27, 236–239. [Google Scholar] [CrossRef]
- Krig, S.; Krig, S. Interest point detector and feature descriptor survey. In Computer Vision Metrics: Textbook Edition; Springer: Berlin/Heidelberg, Germany, 2016; pp. 187–246. [Google Scholar]
- Motta, D.; Casaca, W.; Paiva, A. Fundus image transformation revisited: Towards determining more accurate registrations. In Proceedings of the 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS), Karlstad, Sweden, 18–21 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 227–232. [Google Scholar]
- Burt, P.J.; Adelson, E.H. A multiresolution spline with application to image mosaics. ACM Trans. Graph. (TOG) 1983, 2, 217–236. [Google Scholar] [CrossRef]
- e-ophtha: A Color Fundus Image Database. Available online: https://www.adcis.net/en/Download-Third-Party/E-Ophtha.html (accessed on 28 December 2023).
- RODREP: Rotterdam Ophthalmic Data Repository Longitudinal Diabetic Retinopathy Screening Data. Available online: http://www.rodrep.com/longitudinal-diabetic-retinopathy-screening—description.html (accessed on 28 December 2023).
- VARIA. Available online: http://www.varpa.es/research/biometrics.html (accessed on 28 December 2023).
- FIRE: Fundus Image Registration Dataset. Available online: https://projects.ics.forth.gr/cvrl/fire/ (accessed on 28 December 2023).
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 2564–2571. [Google Scholar]
- Chen, J.; Tian, J.; Lee, N.; Zheng, J.; Smith, R.T.; Laine, A.F. A partial intensity invariant feature descriptor for multimodal retinal image registration. IEEE Trans. Biomed. Eng. 2010, 57, 1707–1718. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Stewart, C.V.; Sofka, M.; Tsai, C.L. Registration of challenging image pairs: Initialization, estimation, and decision. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1973–1989. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.L.; Li, C.Y.; Yang, G.; Lin, K.S. The edge-driven dual-bootstrap iterative closest point algorithm for registration of multimodal fluorescein angiogram sequence. IEEE Trans. Med. Imaging 2009, 29, 636–649. [Google Scholar] [CrossRef] [PubMed]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Chen, L.; Xiang, Y.; Chen, Y.; Zhang, X. Retinal image registration using bifurcation structures. In Proceedings of the 2011 18th IEEE International Conference on Image Processing, Brussels, Belgium, 11–14 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 2169–2172. [Google Scholar]
- Braun, D.; Yang, S.; Martel, J.N.; Riviere, C.N.; Becker, B.C. EyeSLAM: Real-time simultaneous localization and mapping of retinal vessels during intraocular microsurgery. Int. J. Med. Robot. Comput. Assist. Surg. 2018, 14, e1848. [Google Scholar] [CrossRef] [PubMed]
- Serradell, E.; Pinheiro, M.A.; Sznitman, R.; Kybic, J.; Moreno-Noguer, F.; Fua, P. Non-rigid graph registration using active testing search. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 625–638. [Google Scholar] [CrossRef] [PubMed]
Dataset | Year | Number of Images | Resolution | Disease | Annotators |
---|---|---|---|---|---|
STARE | 2000 | 20 | 605 × 700 | 10 healthy, 10 diseases | 2 |
DRIVE | 2004 | 40 | 768 × 584 | 33 healthy, 7 DR | 3 |
ARIA | 2006 | 161 | 576 × 768 | 61 healthy, 59 DR, 23 AMD | 2 |
CHASEDB1 | 2011 | 28 | 990 × 960 | 28 healthy | 2 |
FIVES | 2021 | 800 | 2048 × 2048 | 200 healthy, 200 AMD, 200 DR, 200 glaucoma | Group |
Total Image Pairs | Aproximate Overlap | Anatomical Changes | |
---|---|---|---|
Category S | 71 | >75% | No |
Category P | 49 | <75% | No |
Category A | 14 | >75% | Yes |
Dataset | Number of Images | Intersection over Union |
---|---|---|
STARE | 20 | 0.5402 |
DRIVE | 40 | 0.5602 |
ARIA | 161 | 0.4532 |
CHASEDB1 | 28 | 0.6326 |
FIVES | 200 | 0.7559 |
ORB | SIFT | SBP-FIR | Proposed Method | |
---|---|---|---|---|
Average number of feature points | 241 | 164 | 125 | 222 |
Average entropy | 5.6809 | 5.9600 | 6.4245 | 7.0137 |
Category S | Category P | Category A | FIRE | Execution Time | Transformation Model | |
---|---|---|---|---|---|---|
REMPE (H-M 17) [20] | 0.958 | 0.542 | 0.660 | 0.773 | 198 | Ellipsoid eye model |
Harris-PIIFD [54] | 0.900 | 0.090 | 0.443 | 0.553 | 13 | Polynomial |
GDB-ICP [55] | 0.814 | 0.303 | 0.303 | 0.576 | 19 | Quadratic |
ED-DB-ICP [56] | 0.604 | 0.441 | 0.497 | 0.553 | 44 | Affine |
SURF+WGTM [57] | 0.835 | 0.061 | 0.069 | 0.472 | – | Quadratic |
RIR-BS [58] | 0.772 | 0.004 | 0.124 | 0.440 | – | Projective |
EyeSLAM [59] | 0.308 | 0.224 | 0.269 | 0.273 | 7 | Rigid |
ATS-RGM [60] | 0.369 | 0.000 | 0.147 | 0.211 | – | Elastic |
SBP-FIR [9] | 0.835 | 0.127 | 0.360 | 0.526 | – | Similarity |
Proposed Method | 0.903 | 0.159 | 0.562 | 0.596 | 96 | Similarity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochoa-Astorga, J.E.; Wang, L.; Du, W.; Peng, Y. Enhanced Vascular Bifurcations Mapping: Refining Fundus Image Registration. Electronics 2024, 13, 1736. https://doi.org/10.3390/electronics13091736
Ochoa-Astorga JE, Wang L, Du W, Peng Y. Enhanced Vascular Bifurcations Mapping: Refining Fundus Image Registration. Electronics. 2024; 13(9):1736. https://doi.org/10.3390/electronics13091736
Chicago/Turabian StyleOchoa-Astorga, Jesús Eduardo, Linni Wang, Weiwei Du, and Yahui Peng. 2024. "Enhanced Vascular Bifurcations Mapping: Refining Fundus Image Registration" Electronics 13, no. 9: 1736. https://doi.org/10.3390/electronics13091736
APA StyleOchoa-Astorga, J. E., Wang, L., Du, W., & Peng, Y. (2024). Enhanced Vascular Bifurcations Mapping: Refining Fundus Image Registration. Electronics, 13(9), 1736. https://doi.org/10.3390/electronics13091736