Deep Learning-Empowered RF Sensing in Outdoor Environments: Recent Advances, Challenges, and Future Directions
Abstract
:1. Introduction
- Unlike existing surveys, this survey provides a comprehensive review of RF sensing in outdoor environments, identifying key challenges and examining wireless technologies best suited for these settings.
- We provide a detailed examination of DL techniques, both generative and discriminative, alongside recent outdoor RF sensing studies. We highlight the benefits and limitations of each approach, compare these two modeling paradigms, and discuss the advantages and disadvantages of integrating them.
- This survey paper explores the existing challenges of leveraging DL in outdoor RF sensing and presents insights and possible solutions for future tendencies.
2. Overview of RF Sensing in Outdoor Environments
2.1. Challenges of RF Sensing in Outdoor Environments
2.2. Wireless Technologies for Outdoor Environments
3. The Role of Deep Learning in RF Sensing
3.1. Deep Learning Models in RF Sensing
3.2. Deep Learning-Empowered Outdoor RF Sensing
3.2.1. Generative Models
3.2.2. Discriminative Models
3.2.3. Comparison and Integration of Discriminative and Generative Models
4. Challenges and Future Directions
4.1. The Scarcity of Training Data
4.2. The Gap Between Synthetic and Real-World Data
4.3. The Data Preprocessing Effort
4.4. Multimodal RF Sensing
4.5. Integrated Sensing and Communication (ISAC)
4.6. Federated Learning
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, J.; Xi, R.; He, Y.; Sun, Y.; Guo, X.; Wang, W.; Na, X.; Liu, Y.; Shi, Z.; Gu, T. A Survey of mmWave-Based Human Sensing: Technology, Platforms and Applications. IEEE Commun. Surv. Tutor. 2023, 25, 2052–2087. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, T.; Luo, J. Octopus: A Practical and Versatile Wideband MIMO Sensing Platform. In Proceedings of the 27th Annual International Conference on Mobile Computing and Networking (MobiCom ’21), New Orleans, LA, USA, 31 January–4 February 2021; pp. 601–614. [Google Scholar] [CrossRef]
- Lubna, L.; Hameed, H.; Ansari, S.; Zahid, A.; Sharif, A.; Abbas, H.T.; Alqahtani, F.; Mufti, N.; Ullah, S.; Imran, M.A.; et al. Radio frequency sensing and its innovative applications in diverse sectors: A comprehensive study. Front. Commun. Netw. 2022, 3, 1010228. [Google Scholar] [CrossRef]
- Kong, H.; Huang, C.; Yu, J.; Shen, X. A Survey of mmWave Radar-Based Sensing in Autonomous Vehicles, Smart Homes and Industry. IEEE Commun. Surv. Tutor. 2024; early access. [Google Scholar] [CrossRef]
- Alam, S.S.; Chakma, A.; Rahman, M.H.; Bin Mofidul, R.; Alam, M.M.; Utama, I.B.K.Y.; Jang, Y.M. RF-Enabled Deep-Learning-Assisted Drone Detection and Identification: An End-to-End Approach. Sensors 2023, 23, 4202. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Ullah, A.; Choi, W. WiFi-Based Human Sensing with Deep Learning: Recent Advances, Challenges, and Opportunities. IEEE Open J. Commun. Soc. 2024, 5, 3595–3623. [Google Scholar] [CrossRef]
- Jagannath, A.; Jagannath, J.; Kumar, P.S.P.V. A comprehensive survey on radio frequency (RF) fingerprinting: Traditional approaches, deep learning, and open challenges. Comput. Netw. 2022, 219, 109455. [Google Scholar] [CrossRef]
- Cui, L.; Zhang, Z.; Gao, N.; Meng, Z.; Li, Z. Radio frequency identification and sensing techniques and their applications—A review of the state-of-the-art. Sensors 2019, 19, 4012. [Google Scholar] [CrossRef]
- Moloudian, G.; Hosseinifard, M.; Kumar, S.; Simorangkir, R.B.; Buckley, J.L.; Song, C.; Fantoni, G.; O’Flynn, B. RF energy harvesting techniques for battery-less wireless sensing, industry 4.0 and internet of things: A review. IEEE Sens. J. 2024, 24, 5732–5745. [Google Scholar] [CrossRef]
- Khunteta, S.; Saikrishna, P.; Agrawal, A.; Kumar, A.; Chavva, A.K.R. RF-Sensing: A New Way to Observe Surroundings. IEEE Access 2022, 10, 129653–129665. [Google Scholar] [CrossRef]
- Pathak, N.P. Non-invasive RF sensors: Design and analysis. In Proceedings of the 2017 2nd International Conference on Telecommunication and Networks (TEL-NET), Noida, India, 10–11 August 2017; p. 1. [Google Scholar] [CrossRef]
- Liu, F.; Cui, Y.; Masouros, C.; Xu, J.; Han, T.X.; Eldar, Y.C.; Buzzi, S. Integrated Sensing and Communications: Toward Dual-Functional Wireless Networks for 6G and Beyond. IEEE J. Select. Areas Commun. 2022, 40, 1728–1767. [Google Scholar] [CrossRef]
- Van Truong, T.; Nayyar, A.; Masud, M. A novel air quality monitoring and improvement system based on wireless sensor and actuator networks using LoRa communication. PeerJ Comput. Sci. 2021, 7, e711. [Google Scholar] [CrossRef] [PubMed]
- Yapar, C.; Levie, R.; Kutyniok, G.; Caire, G. Real-Time Outdoor Localization Using Radio Maps: A Deep Learning Approach. IEEE Trans. Wirel. Commun. 2023, 22, 9703–9717. [Google Scholar] [CrossRef]
- Yi Lim, N.C.; Yong, L.; Su, H.T.; Yu Hao Chai, A.; Vithanawasam, C.K.; Then, Y.L.; Siang Tay, F. Review of Temperature and Humidity Impacts on RF Signals. In Proceedings of the 13th International UNIMAS Engineering Conference (EnCon 2020), Kota Samarahan, Malaysia, 27–28 October 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Haenggi, M.; Ganti, R.K. Interference in large wireless networks. Found. Trends Netw. 2009, 3, 127–248. [Google Scholar] [CrossRef]
- Zheng, T.; Chen, Z.; Ding, S.; Luo, J. Enhancing RF Sensing with Deep Learning: A Layered Approach. IEEE Commun. Mag. 2021, 59, 70–76. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Mao, S. RF Sensing in the Internet of Things: A General Deep Learning Framework. IEEE Commun. Mag. 2018, 56, 62–67. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Y.; Pourpanah, F. Recent advances in deep learning. Int. J. Mach. Learn. Cybern. 2020, 11, 747–750. [Google Scholar] [CrossRef]
- Bayoudh, K.; Knani, R.; Hamdaoui, F.; Mtibaa, A. A survey on deep multimodal learning for computer vision: Advances, trends, applications, and datasets. Vis. Comput. 2022, 38, 2939–2970. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Young, T.; Pandelea, V.; Xue, F.; Cambria, E. Recent advances in deep learning based dialogue systems: A systematic survey. Artif. Intell. Rev. 2023, 56, 3055–3155. [Google Scholar] [CrossRef]
- Iman, M.; Arabnia, H.R.; Rasheed, K. A review of deep transfer learning and recent advancements. Technologies 2023, 11, 40. [Google Scholar] [CrossRef]
- Choudhary, K.; DeCost, B.; Chen, C.; Jain, A.; Tavazza, F.; Cohn, R.; Park, C.W.; Choudhary, A.; Agrawal, A.; Billinge, S.J.; et al. Recent advances and applications of deep learning methods in materials science. Npj Comput. Mater. 2022, 8, 59. [Google Scholar] [CrossRef]
- Sigg, S.; Scholz, M.; Shi, S.; Ji, Y.; Beigl, M. RF-sensing of activities from non-cooperative subjects in device-free recognition systems using ambient and local signals. IEEE Trans. Mob. Comput. 2013, 13, 907–920. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Gao, Q.; Ma, X.; Feng, X.; Wang, H. Device-free simultaneous wireless localization and activity recognition with wavelet feature. IEEE Trans. Veh. Technol. 2016, 66, 1659–1669. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Elbir, A.M. DeepMUSIC: Multiple signal classification via deep learning. IEEE Sens. Lett. 2020, 4, 1–4. [Google Scholar] [CrossRef]
- Conn, M.A.; Josyula, D. Radio Frequency Classification and Anomaly Detection Using Convolutional Neural Networks. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Regmi, H.; Sur, S. CoSense: Deep Learning Augmented Sensing for Coexistence with Networking in Millimeter-Wave Picocells. ACM Trans. Internet Things 2024, 5, 17:1–17:35. [Google Scholar] [CrossRef]
- Chi, G.; Yang, Z.; Wu, C.; Xu, J.; Gao, Y.; Liu, Y.; Han, T.X. RF-Diffusion: Radio Signal Generation via Time-Frequency Diffusion. In Proceedings of the 30th Annual International Conference on Mobile Computing and Networking (MobiCom ’24), Washington, DC, USA, 18–22 November 2024; pp. 77–92. [Google Scholar] [CrossRef]
- Liu, C.; Liu, X.; Li, S.; Yuan, W.; Ng, D.W.K. Deep CLSTM for Predictive Beamforming in Integrated Sensing and Communication-Enabled Vehicular Networks. J. Commun. Inf. Netw. 2022, 7, 269–277. [Google Scholar] [CrossRef]
- Liu, C.; Liu, X.; Wei, Z.; Ng, D.W.K.; Schober, R. Scalable Predictive Beamforming for IRS-Assisted Multi-User Communications: A Deep Learning Approach. arXiv 2022, arXiv:2211.12644. [Google Scholar]
- Nirmal, I.; Khamis, A.; Hassan, M.; Hu, W.; Zhu, X. Deep Learning for Radio-Based Human Sensing: Recent Advances and Future Directions. IEEE Commun. Surv. Tutor. 2021, 23, 995–1019. [Google Scholar] [CrossRef]
- Burghal, D.; Ravi, A.T.; Rao, V.; Alghafis, A.A.; Molisch, A.F. A Comprehensive Survey of Machine Learning Based Localization with Wireless Signals. arXiv 2020, arXiv:2012.11171. [Google Scholar] [CrossRef]
- Amjad, B.; Ahmed, Q.Z.; Lazaridis, P.I.; Hafeez, M.; Khan, F.A.; Zaharis, Z.D. Radio SLAM: A Review on Radio-Based Simultaneous Localization and Mapping. IEEE Access 2023, 11, 9260–9278. [Google Scholar] [CrossRef]
- Soumya, A.; Krishna Mohan, C.; Cenkeramaddi, L.R. Recent Advances in mmWave-Radar-Based Sensing, Its Applications, and Machine Learning Techniques: A Review. Sensors 2023, 23, 8901. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, C.; Li, K.; Zhang, J.; Guo, X.; Jin, M.; Zheng, X.; He, Y. Wireless sensing for material identification: A survey. IEEE Commun. Surv. Tutor. 2024; Early Access. [Google Scholar] [CrossRef]
- Kerdjidj, O.; Himeur, Y.; Sohail, S.S.; Amira, A.; Fadli, F.; Attala, S.; Mansoor, W.; Copiaco, A.; Gawanmeh, A.; Miniaoui, S.; et al. Uncovering the potential of indoor localization: Role of deep and transfer learning. IEEE Access 2024, 12, 73980–74010. [Google Scholar] [CrossRef]
- Zafari, F.; Gkelias, A.; Leung, K.K. A Survey of Indoor Localization Systems and Technologies. IEEE Commun. Surv. Tutor. 2019, 21, 2568–2599. [Google Scholar] [CrossRef]
- Yassin, A.; Nasser, Y.; Awad, M.; Al-Dubai, A.; Liu, R.; Yuen, C.; Raulefs, R.; Aboutanios, E. Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications. IEEE Commun. Surv. Tutor. 2017, 19, 1327–1346. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Zhao, Q.; Zou, H.; Lasaulce, S.; Valenzise, G.; He, Z.; Debbah, M. Generative AI for RF Sensing in IoT Systems. arXiv 2024, arXiv:2407.07506. [Google Scholar]
- Dogan, D.; Dalveren, Y.; Kara, A. A Mini-Review on Radio Frequency Fingerprinting Localization in Outdoor Environments: Recent Advances and Challenges. In Proceedings of the 14th International Conference on Communications (COMM), Bucharest, Romania, 16–18 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Budalal, A.A.; Islam, M.R. Path loss models for outdoor environment—With a focus on rain attenuation impact on short-range millimeter-wave links. E-Prime-Adv. Electr. Eng. Electron. Energy 2023, 3, 100106. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Blankenship, K.; Xu, H. Propagation and Radio System Design Issues in Mobile Radio Systems for the Glomo Project; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 1997. [Google Scholar]
- Cho, Y.S.; Kim, J.; Yang, W.Y.; Kang, C.G. MIMO-OFDM Wireless Communications with MATLAB; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Liu, Y.; Liu, X.; Mu, X.; Hou, T.; Xu, J.; Di Renzo, M.; Al-Dhahir, N. Reconfigurable Intelligent Surfaces: Principles and Opportunities. IEEE Commun. Surv. Tutor. 2021, 23, 1546–1577. [Google Scholar] [CrossRef]
- Trichopoulos, G.C.; Theofanopoulos, P.; Kashyap, B.; Shekhawat, A.; Modi, A.; Osman, T.; Kumar, S.; Sengar, A.; Chang, A.; Alkhateeb, A. Design and Evaluation of Reconfigurable Intelligent Surfaces in Real-World Environment. IEEE Open J. Commun. Soc. 2022, 3, 462–474. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, H.; Di, B.; Li, L.; Bian, K.; Song, L.; Li, Y.; Han, Z.; Poor, H.V. Reconfigurable Intelligent Surface Based RF Sensing: Design, Optimization, and Implementation. IEEE J. Sel. Areas Commun. 2020, 38, 2700–2716. [Google Scholar] [CrossRef]
- Alexandropoulos, G.C.; Crozzoli, M.; Phan-Huy, D.T.; Katsanos, K.D.; Wymeersch, H.; Popovski, P.; Ratajczak, P.; Bénédic, Y.; Hamon, M.H.; Gonzalez, S.H.; et al. Smart Wireless Environments Enabled by RISs: Deployment Scenarios and Two Key Challenges. arXiv 2022, arXiv:2203.13478. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Wen, C.; Li, J.; Xia, X.G.; Hong, W. An Efficient Radio Frequency Interference Mitigation Algorithm in Real Synthetic Aperture Radar Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Ameloot, T.; Van Torre, P.; Rogier, H. Variable Link Performance Due to Weather Effects in a Long-Range, Low-Power LoRa Sensor Network. Sensors 2021, 21, 3128. [Google Scholar] [CrossRef]
- Hau, F.; Baumgärtner, F.; Vossiek, M. The Degradation of Automotive Radar Sensor Signals Caused by Vehicle Vibrations and Other Nonlinear Movements. Sensors 2020, 20, 6195. [Google Scholar] [CrossRef] [PubMed]
- Iannizzotto, G.; Milici, M.; Nucita, A.; Lo Bello, L. A Perspective on Passive Human Sensing with Bluetooth. Sensors 2022, 22, 3523. [Google Scholar] [CrossRef]
- Tabassum, M.; Zen, K. Performance Evaluation of ZigBee in Indoor and Outdoor Environment. In Proceedings of the 9th International Conference on IT in Asia (CITA), Kuching, Malaysia, 4–5 August 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Sigfox. Sigfox: A Global 0G Network for IoT. 2024. Available online: https://build.sigfox.com/sigfox (accessed on 21 December 2024).
- LoRa, Platform for IoT | Semtech. Available online: https://www.semtech.com/lora (accessed on 21 December 2024).
- Augustin, A.; Yi, J.; Clausen, T.; Townsley, W.M. A Study of LoRa: Long Range I& Low Power Networks for the Internet of Things. Sensors 2016, 16, 1466. [Google Scholar] [CrossRef] [PubMed]
- Chu, N.H.; Nguyen, D.N.; Hoang, D.T.; Pham, Q.V.; Phan, K.T.; Hwang, W.J.; Dutkiewicz, E. AI-Enabled mm-Waveform Configuration for Autonomous Vehicles with Integrated Communication and Sensing. IEEE Internet Things J. 2023, 10, 16727–16743. [Google Scholar] [CrossRef]
- Chen, C.; Chen, X.; Das, D.; Akhmetov, D.; Cordeiro, C. Overview and Performance Evaluation of Wi-Fi 7. IEEE Commun. Stand. Mag. 2022, 6, 12–18. [Google Scholar] [CrossRef]
- Ahson, S.A.; Ilyas, M. RFID Handbook: Applications, Technology, Security, and Privacy; CRC Press: Boca, FL, USA, 2017; ISBN 978-1-4200-5499-6. [Google Scholar]
- Barbieri, L.; Brambilla, M.; Trabattoni, A.; Mervic, S.; Nicoli, M. UWB Localization in a Smart Factory: Augmentation Methods and Experimental Assessment. IEEE Trans. Instrum. Meas. 2021, 70, 1–18. [Google Scholar] [CrossRef]
- Hillger, P.; Grzyb, J.; Jain, R.; Pfeiffer, U.R. Terahertz Imaging and Sensing Applications with Silicon-Based Technologies. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 1–19. [Google Scholar] [CrossRef]
- Li, Y.; Chi, Z.; Liu, X.; Zhu, T. Passive-ZigBee: Enabling ZigBee Communication in IoT Networks with 1000X+ Less Power Consumption. In Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems (SenSys ’18), Shenzhen, China, 4–7 November 2018; pp. 159–171. [Google Scholar] [CrossRef]
- Demeslay, C.; Rostaing, P.; Gautier, R. Theoretical Performance of LoRa System in Multipath and Interference Channels. IEEE Internet Things J. 2022, 9, 6830–6843. [Google Scholar] [CrossRef]
- Haxhibeqiri, J.; Van den Abeele, F.; Moerman, I.; Hoebeke, J. LoRa Scalability: A Simulation Model Based on Interference Measurements. Sensors 2017, 17, 1193. [Google Scholar] [CrossRef]
- Nie, M.; Zou, L.; Cui, H.; Zhou, X.; Wan, Y. Enhancing Human Activity Recognition with LoRa Wireless RF Signal Preprocessing and Deep Learning. Electronics 2024, 13, 264. [Google Scholar] [CrossRef]
- Islam, K.Z.; Murray, D.; Diepeveen, D.; Jones, M.G.K.; Sohel, F. LoRa-based outdoor localization and tracking using unsupervised symbolization. Internet Things 2024, 25, 101016. [Google Scholar] [CrossRef]
- Wu, D.; Liebeherr, J. A Low-Cost Low-Power LoRa Mesh Network for Large-Scale Environmental Sensing. IEEE Internet Things J. 2023, 10, 16700–16714. [Google Scholar] [CrossRef]
- Hao, Z.; Yan, H.; Dang, X.; Ma, Z.; Jin, P.; Ke, W. Millimeter-Wave Radar Localization Using Indoor Multipath Effect. Sensors 2022, 22, 5671. [Google Scholar] [CrossRef]
- Kwon, G.; Liu, Z.; Conti, A.; Park, H.; Win, M.Z. Integrated Localization and Communication for Efficient Millimeter Wave Networks. IEEE J. Sel. Areas Commun. 2023, 41, 3925–3941. [Google Scholar] [CrossRef]
- Feng, Y.; Xie, Y.; Ganesan, D.; Xiong, J. LTE-based Pervasive Sensing Across Indoor and Outdoor. In Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems SenSys ’21, New York, NY, USA, 15–17 November 2021; pp. 138–151. [Google Scholar] [CrossRef]
- Sardar, S.; Mishra, A.K.; Khan, M.Z.A. Vehicle detection and classification using LTE-CommSense. IET Radar Sonar Navig. 2019, 13, 850–857. [Google Scholar] [CrossRef]
- Sonny, A.; Rai, P.K.; Kumar, A.; Khan, M.Z.A. Deep learning-based smart parking solution using channel state information in LTE-based cellular networks. In Proceedings of the International Conference on COMmunication Systems & NETworkS (COMSNETS), Bangalore, India, 8–10 January 2020; pp. 642–645. [Google Scholar] [CrossRef]
- Jabbar, A.; Abdullah, F.Y. Long term evolution (LTE) scheduling algorithms in wireless sensor networks (WSN). Int. J. Comput. Appl. 2015, 121. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, J.; He, K.; Wu, C.; Zhao, Z.; Du, R. WiFiLeaks: Exposing Stationary Human Presence through a Wall with Commodity Mobile Devices. IEEE Trans. Mob. Comput. 2024, 23, 6997–7011. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, G.; Wang, S. WiFi Sensing with Channel State Information. ACM Comput. Surv. 2019, 52, 1–36. [Google Scholar] [CrossRef]
- Landaluce, H.; Arjona, L.; Perallos, A.; Falcone, F.; Angulo, I.; Muralter, F. A Review of IoT Sensing Applications and Challenges Using RFID and Wireless Sensor Networks. Sensors 2020, 20, 2495. [Google Scholar] [CrossRef]
- Shen, E.; Yang, W.; Wang, X.; Kang, B.; Mao, S. TagSense: Robust Wheat Moisture and Temperature Sensing Using RFID. IEEE J. Radio Freq. Identif. 2024, 8, 76–87. [Google Scholar] [CrossRef]
- Le Breton, M.; Baillet, L.; Larose, E.; Rey, E.; Benech, P.; Jongmans, D.; Guyoton, F. Outdoor UHF RFID: Phase Stabilization for Real-world Applications. IEEE J. Radio Freq. Identif. 2017, 1, 279–290. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, L.T.; Chen, M.; Zhao, S.; Guo, M.; Zhang, Y. Real-time locating systems using active RFID for Internet of Things. IEEE Syst. J. 2014, 10, 1226–1235. [Google Scholar] [CrossRef]
- Florentin, I. Discussion on UWB Technology and Its Applicability in Different Fields. J. Mil. Technol. 2020, 4. [Google Scholar] [CrossRef]
- Queralta, J.P.; Martínez Almansa, C.; Schiano, F.; Floreano, D.; Westerlund, T. UWB-based System for UAV Localization in GNSS-Denied Environments: Characterization and Dataset. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 4521–4528. [Google Scholar] [CrossRef]
- Gabela, J.; Retscher, G.; Goel, S.; Perakis, H.; Masiero, A.; Toth, C.; Gikas, V.; Kealy, A.; Koppányi, Z.; Błaszczak-Bąk, W.; et al. Experimental Evaluation of a UWB-Based Cooperative Positioning System for Pedestrians in GNSS-Denied Environment. Sensors 2019, 19, 5274. [Google Scholar] [CrossRef]
- Yang, J.; Dong, B.; Wang, J. VULoc: Accurate UWB Localization for Countless Targets without Synchronization. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2022, 6, 1–25. [Google Scholar] [CrossRef]
- Siegel, P. Terahertz technology. IEEE Trans. Microw. Theory Tech. 2002, 50, 910–928. [Google Scholar] [CrossRef]
- Bogue, R. Sensing with terahertz radiation: A review of recent progress. Sens. Rev. 2018, 38, 216–222. [Google Scholar] [CrossRef]
- Jansen, C.; Wietzke, S.; Peters, O.; Scheller, M.; Vieweg, N.; Salhi, M.; Krumbholz, N.; Jördens, C.; Hochrein, T.; Koch, M. Terahertz imaging: Applications and perspectives. Appl. Opt. 2010, 49, E48–E57. [Google Scholar] [CrossRef]
- Ren, A.; Zahid, A.; Fan, D.; Yang, X.; Imran, M.A.; Alomainy, A.; Abbasi, Q.H. State-of-the-Art in Terahertz Sensing for Food and Water Security—A Comprehensive Review. Trends Food Sci. Technol. 2019, 85, 241–251. [Google Scholar] [CrossRef]
- Pawar, A.Y.; Sonawane, D.D.; Erande, K.B.; Derle, D.V. Terahertz technology and its applications. Drug Invent. Today 2013, 5, 157–163. [Google Scholar] [CrossRef]
- Naftaly, M.; Vieweg, N.; Deninger, A. Industrial applications of terahertz sensing: State of play. Sensors 2019, 19, 4203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhu, G.; Chen, J.; Cui, S. Fast and Accurate Cooperative Radio Map Estimation Enabled by GAN. arXiv 2024, arXiv:2402.02729. [Google Scholar] [CrossRef]
- Teganya, Y.; Romero, D. Deep Completion Autoencoders for Radio Map Estimation. IEEE Trans. Wirel. Commun. 2022, 21, 1710–1724. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X. RF Genesis: Zero-Shot Generalization of mmWave Sensing through Simulation-Based Data Synthesis and Generative Diffusion Models. In Proceedings of the 21st ACM Conference on Embedded Networked Sensor Systems (SenSys ’23), Istanbul, Turkey, 6–9 November 2024; pp. 28–42. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, L.; Zhang, L.; Qian, L.; Yang, X. Diffusion-Based Radio Signal Augmentation for Automatic Modulation Classification. Electronics 2024, 13, 2063. [Google Scholar] [CrossRef]
- Chang, J.; Zhou, Z.; Mi, S.; Zhang, Y. Radio frequency fingerprint recognition method based on prior information. Comput. Electr. Eng. 2024, 120, 109684. [Google Scholar] [CrossRef]
- An, T.; Zhou, Y.; Zou, H.; Yang, J. IoT-LLM: Enhancing Real-World IoT Task Reasoning with Large Language Models. arXiv 2024, arXiv:2410.02429. [Google Scholar]
- Dai, S.; Jiang, S.; Yang, Y.; Cao, T.; Li, M.; Banerjee, S.; Qiu, L. Advancing Multi-Modal Sensing Through Expandable Modality Alignment. arXiv 2024, arXiv:2407.17777. [Google Scholar]
- Zhao, L.; Lyu, R.; Lei, H.; Lin, Q.; Zhou, A.; Ma, H.; Wang, J.; Meng, X.; Shao, C.; Tang, Y.; et al. AirECG: Contactless Electrocardiogram for Cardiac Disease Monitoring via mmWave Sensing and Cross-domain Diffusion Model. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2024, 8, 144:1–144:27. [Google Scholar] [CrossRef]
- Nguyen, H.N.; Vomvas, M.; Vo-Huu, T.D.; Noubir, G. WRIST: Wideband, Real-Time, Spectro-Temporal RF Identification System Using Deep Learning. IEEE Trans. Mob. Comput. 2024, 23, 1550–1567. [Google Scholar] [CrossRef]
- Mohamed, A.; Tharwat, M.; Magdy, M.; Abubakr, T.; Nasr, O.; Youssef, M. DeepFeat: Robust Large-Scale Multi-Features Outdoor Localization in LTE Networks Using Deep Learning. IEEE Access 2022, 10, 3400–3414. [Google Scholar] [CrossRef]
- Xue, C.; Li, T.; Li, Y.; Ruan, Y.; Zhang, R.; Dobre, O.A. Radio-Frequency Identification for Drones With Nonstandard Waveforms Using Deep Learning. IEEE Trans. Instrum. Meas. 2023, 72, 1–13. [Google Scholar] [CrossRef]
- Podder, P.; Zawodniok, M.; Madria, S. Deep Learning for UAV Detection and Classification via Radio Frequency Signal Analysis. In Proceedings of the 25th IEEE International Conference on Mobile Data Management (MDM), Brussels, Belgium, 24–27 June 2024; pp. 165–174. [Google Scholar] [CrossRef]
- Li, A.; Bodanese, E.; Poslad, S.; Chen, P.; Wang, J.; Fan, Y.; Hou, T. A Contactless Health Monitoring System for Vital Signs Monitoring, Human Activity Recognition, and Tracking. IEEE Internet Things J. 2024, 11, 29275–29286. [Google Scholar] [CrossRef]
- Wang, S.; Cao, D.; Liu, R.; Jiang, W.; Yao, T.; Lu, C.X. Human Parsing with Joint Learning for Dynamic mmWave Radar Point Cloud. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2023, 7, 34:1–34:22. [Google Scholar] [CrossRef]
- Yang, J.; Chen, X.; Zou, H.; Lu, C.X.; Wang, D.; Sun, S.; Xie, L. SenseFi: A library and benchmark on deep-learning-empowered WiFi human sensing. Patterns 2023, 4, 100703. [Google Scholar] [CrossRef]
- Song, M.; Lou, L.; Chen, X.; Zhao, X.; Hong, Y.; Zhang, S.; He, W. Wi-LADL: A Wireless-Based Lightweight Attention Deep Learning Method for Human-Vehicle Recognition. IEEE Sens. J. 2023, 23, 2803–2814. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, P.; Yan, X.; Wu, H.C.; He, L. Radio Frequency-Based UAV Sensing Using Novel Hybrid Lightweight Learning Network. IEEE Sens. J. 2024, 24, 4841–4850. [Google Scholar] [CrossRef]
- Tomczak, J.M. Why Deep Generative Modeling? In Deep Generative Modeling; Springer Nature: Cham, Switzerland, 2021; pp. 1–12. [Google Scholar] [CrossRef]
- Zhou, R.; Tang, M.; Gong, Z.; Hao, M. FreeTrack: Device-free human tracking with deep neural networks and particle filtering. IEEE Syst. J. 2019, 14, 2990–3000. [Google Scholar] [CrossRef]
- Wu, X.; Chu, Z.; Yang, P.; Xiang, C.; Zheng, X.; Huang, W. TW-See: Human activity recognition through the wall with commodity Wi-Fi devices. IEEE Trans. Veh. Technol. 2018, 68, 306–319. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, G.; Tang, C.; Luo, C.; Zeng, W.; Zha, Z.J. A Battle of Network Structures: An Empirical Study of CNN, Transformer, and MLP. arXiv 2021, arXiv:2108.13002. [Google Scholar]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 1–74. [Google Scholar] [CrossRef]
- Shewalkar, A.; Nyavanandi, D.; Ludwig, S.A. Performance evaluation of deep neural networks applied to speech recognition: RNN, LSTM and GRU. J. Artif. Intell. Soft Comput. Res. 2019, 9, 235–245. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. In Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook; Springer: Berlin/Heidelberg, Germany, 2023; pp. 353–374. [Google Scholar]
- Doersch, C. Tutorial on variational autoencoders. arXiv 2016, arXiv:1606.05908. [Google Scholar]
- Almazrouei, E.; Gianini, G.; Almoosa, N.; Damiani, E. A Deep Learning Approach to Radio Signal Denoising. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Marrakech, Morocco, 1–8 April 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Migliori, B.; Zeller-Townson, R.; Grady, D.; Gebhardt, D. Biologically inspired radio signal feature extraction with sparse denoising autoencoders. arXiv 2016, arXiv:1605.05239. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative adversarial networks: An overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [Google Scholar] [CrossRef]
- Mirza, M. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 2020, 33, 6840–6851. [Google Scholar]
- Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. OpenAI. 2018. Available online: https://api.semanticscholar.org/CorpusID:49313245 (accessed on 21 December 2024).
- Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al. LLaMA: Open and Efficient Foundation Language Models. arXiv 2023, arXiv:2302.13971. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Liu, G.; Van Huynh, N.; Du, H.; Hoang, D.T.; Niyato, D.; Zhu, K.; Kang, J.; Xiong, Z.; Jamalipour, A.; Kim, D.I. Generative AI for Unmanned Vehicle Swarms: Challenges, Applications and Opportunities. arXiv 2024, arXiv:2402.18062. [Google Scholar]
- Zhou, H.; Hu, C.; Yuan, Y.; Cui, Y.; Jin, Y.; Chen, C.; Wu, H.; Yuan, D.; Jiang, L.; Wu, D.; et al. Large language model (LLM) for telecommunications: A comprehensive survey on principles, key techniques, and opportunities. arXiv 2024, arXiv:2405.10825. [Google Scholar] [CrossRef]
- Ouyang, X.; Srivastava, M. LLMSense: Harnessing LLMs for High-level Reasoning Over Spatiotemporal Sensor Traces. arXiv 2024, arXiv:2403.19857. [Google Scholar]
- Ji, S.; Zheng, X.; Wu, C. HARGPT: Are LLMs Zero-Shot Human Activity Recognizers? arXiv 2024, arXiv:2403.02727. [Google Scholar]
- Liu, C.; Wei, Z.; Ng, D.W.K.; Yuan, J.; Liang, Y.C. Deep Transfer Learning for Signal Detection in Ambient Backscatter Communications. IEEE Trans. Wirel. Commun. 2021, 20, 1624–1638. [Google Scholar] [CrossRef]
- Levie, R.; Yapar, C.; Kutyniok, G.; Caire, G. RadioUNet: Fast Radio Map Estimation with Convolutional Neural Networks. IEEE Trans. Wirel. Commun. 2021, 20, 4001–4015. [Google Scholar] [CrossRef]
- Bahl, P.; Padmanabhan, V.N. RADAR: An In-Building RF-Based User Location and Tracking System. In Proceedings of the 19th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2000), Tel Aviv, Israel, 26–30 March 2000; pp. 775–784. [Google Scholar] [CrossRef]
- Oh, J.; Kim, J. AdaptiveK-nearest neighbour algorithm for WiFi fingerprint positioning. ICT Express 2018, 4, 91–94. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Yao, Y.; Lv, K.; Huang, S.; Li, X.; Xiang, W. UAV trajectory and energy efficiency optimization in RIS-assisted multi-user air-to-ground communications networks. Drones 2023, 7, 272. [Google Scholar] [CrossRef]
- Lukito, W.D.; Xiang, W.; Lai, P.; Cheng, P.; Liu, C.; Yu, K.; Zhu, X. Integrated STAR-RIS and UAV for Satellite IoT Communications: An Energy-Efficient Approach. IEEE Internet of Things J. 2024; Early Access. [Google Scholar] [CrossRef]
- Bremnes, K.; Moen, R.; Yeduri, S.R.; Yakkati, R.R.; Cenkeramaddi, L.R. Classification of UAVs utilizing fixed boundary empirical wavelet sub-bands of RF fingerprints and deep convolutional neural network. IEEE Sens. J. 2022, 22, 21248–21256. [Google Scholar] [CrossRef]
- Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 11976–11986. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the 9th International Conference on Learning Representations (ICLR), Virtual Conference, 3–7 May 2021. [Google Scholar]
- Medaiyese, O.O.; Ezuma, M.; Lauf, A.P.; Adeniran, A.A. Hierarchical Learning Framework for UAV Detection and Identification. IEEE J. Radio Freq. Identif. 2022, 6, 176–188. [Google Scholar] [CrossRef]
- Lee, W.; Park, J. LLM-Empowered Resource Allocation in Wireless Communications Systems. arXiv 2024, arXiv:2408.02944. [Google Scholar]
- Khachatrian, H.; Mkrtchyan, R.; Raptis, T.P. Outdoor Environment Reconstruction with Deep Learning on Radio Propagation Paths. arXiv 2024, arXiv:2402.17336. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, L.; Xia, D.; Sun, D.; Liu, W. STL-Detector: Detecting City-Wide Ride-Sharing Cars via Self-Taught Learning. IEEE Internet Things J. 2022, 9, 2346–2360. [Google Scholar] [CrossRef]
- Li, J.; Zhang, D.; Wu, Z.; Yu, C.; Li, Y.; Chen, Q.; Hu, Y.; Sun, Q.; Chen, Y. SBRF: A Fine-Grained Radar Signal Generator for Human Sensing. IEEE Trans. Mob. Comput. 2024; 1–17, Early Access. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, X.; Li, Z. Radio Anomaly Detection Based on Improved Denoising Diffusion Probabilistic Models. IEEE Commun. Lett. 2023, 27, 1979–1983. [Google Scholar] [CrossRef]
- Menghani, G. Efficient deep learning: A survey on making deep learning models smaller, faster, and better. ACM Comput. Surv. 2023, 55, 1–37. [Google Scholar] [CrossRef]
- Liu, C.; Yuan, W.; Li, S.; Liu, X.; Li, H.; Ng, D.W.K.; Li, Y. Learning-based Predictive Beamforming for Integrated Sensing and Communication in Vehicular Networks. IEEE J. Sel. Areas Commun. 2022, 40, 2317–2334. [Google Scholar] [CrossRef]
- Demirhan, U.; Alkhateeb, A. Integrated Sensing and Communication for 6G: Ten Key Machine Learning Roles. IEEE Commun. Mag. 2023, 61, 113–119. [Google Scholar] [CrossRef]
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Aguera y Arcas, B. Communication-Efficient Learning of Deep Networks from Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, FL, USA, 20–22 April 2017; pp. 1273–1282. [Google Scholar]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Vincent Poor, H. Federated Learning for Internet of Things: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2021, 23, 1622–1658. [Google Scholar] [CrossRef]
Environment | Path Loss Exponent (n) |
---|---|
Free space (Outdoor) | 2 |
Urban area cellular radio (Outdoor) | 2.7–3.5 |
Shadowed urban cellular radio (Outdoor) | 3–5 |
In-building LoS (Indoor) | 1.6–1.8 |
Obstructed in building (Indoor) | 4–6 |
Obstructed in factories (Indoor) | 2–3 |
Name | Sensing Range | Transmission Power | Operating Frequency | Outdoor Application |
---|---|---|---|---|
LoRa [57,58] | Up to 15 km | Up to 20 dBm | 433 MHz, 868 MHz, 915 MHz | Environmental monitoring, outdoor localization |
mmWave [4,59] | Up to 500 m | 30–40 dBm | 30–300 GHz | High-resolution outdoor surveillance, autonomous vehicle navigation |
LTE | Up to 100 m | 23–43 dBm | 450 MHz–3.8 GHz | Environmental sensing, asset tracking |
Wi-Fi [60] | Up to 100 m | Up to 30 dBm | 2.4 GHz, 5 GHz, 6 GHz | Public space monitoring, human sensing |
RFID [61] | Up to 10 cm | N/A | 125–134 kHz (Low Frequency) | Asset tracking, wildlife monitoring |
Up to 1 m | N/A | 13.56 MHz (High Frequency) | ||
Up to 10 m | N/A | 860–960 MHz (Ultra-High Frequency) | ||
UWB [62] | Up to 200 m | −41.3 dBm | 3.1–10.6 GHz | High-precision localization |
Terahertz [63] | Up to 10 m | N/A | 0.3–3 THz | Non-invasive inspection, imaging |
ZigBee [64] | Up to 100 m | Up to 20 dBm | 2.4 GHz | Short-range sensing |
Bluetooth [54] | Up to 100 m | 0–20 dBm | 2.4 GHz | Short-range sensing |
Study | Wireless Technology | Data Type | Algorithm |
---|---|---|---|
CoSense [30] | mmWave radar | Experimental | Conditional GAN (mmWave radio map reconstruction) |
Zhang et al. [92] | Ray tracing (5.9 GHz) | Numerical | Conditional GAN (radio map estimation without transmitter info) |
Teganya and Romero [93] | Path loss, shadowing, ray tracing | Mixed | Deep convolutional autoencoder (radio map completion) |
RFGen [94] | mmWave radar (24 GHz, 77 GHz) | Numerical | Generative Diffusion Models (synthetic RF data generation) |
Chi et al. [31] | Wi-Fi (5.825 GHz), mmWave | Mixed | Hierarchical Diffusion Transformer (RF signal reconstruction) |
Xu et al. [95] | RF signals (RadioML2016.10a) | Numerical | Diffusion-based augmentation (DiRSA) (for AMC) |
Chang et al. [96] | RF signals (low SNR) | Experimental | GRU + Transformer + MFCC (RFF classification under low SNR) |
IoT-LLM [97] | IMU, ECG, Wi-Fi CSI, RSSI | Experimental | Structured LLM Reasoning Framework (IoT task reasoning) |
Babel [98] | Wi-Fi, mmWave | Experimental | Multi-modal contrastive learning (multimodal alignment for HAR) |
AirECG [99] | mmWave radar (60–77 GHz) | Experimental | Cross-domain Diffusion Model (mmWave-to-ECG translation) |
Yapar et al. [14] | Custom RF (Ray tracing) | Numerical | LocUNet (UNet-based CNN) (localization from path loss maps) |
WRIST [100] | 2.4 GHz ISM (Wi-Fi, Bluetooth, ZigBee) | Mixed | YOLO-based DL model (RF emission detection and classification) |
DeepFeat [101] | LTE (4G networks) | Experimental | Deep Feed-Forward Neural Network (large-scale outdoor localization) |
Xue et al. [102] | 5.725–5.850 GHz ISM | Experimental | CNN + LSTM (UAV classification under varying conditions) |
Podder et al. [103] | 2.4 GHz ISM (UAV protocols) | Experimental | CNN (ResNet-50V2) (UAV recognition from spectrograms) |
Alam et al. [5] | 2.4 GHz ISM (Wi-Fi, UAV controllers) | Experimental | Deep CNN with residual connections (UAV detection in congested bands) |
HealthDAR [104] | mmWave FMCW Radar (77–79.585 GHz) | Experimental | ResNet-18 + SSPD (vital signs and activity monitoring) |
Wang et al. [105] | mmWave FMCW Radar (60–64 GHz) | Experimental | mmParse (PointNet + NLN + attention) (human parsing) |
SenseFi [106] | Wi-Fi (CSI data) | Experimental | MLP, CNN, LSTM, Transformer (benchmark for Wi-Fi-based human sensing) |
Song et al. [107] | 433 MHz, 915 MHz, 2.4 GHz | Experimental | Lightweight CNN + CBAM (human-vehicle recognition) |
Wang et al. [108] | 2.4 GHz ISM (UAV, Wi-Fi, Bluetooth) | Experimental | UAV-CTNet (CNN + Transformer) (UAV detection and identification) |
Nie et al. [67] | LoRa signals | Experimental | CNN-LSTM, Swin Transformer, ConvNext, Vision TF (LoRa-based HAR) |
Type of Approach | Model | Objectives | Advantages | Disadvantages |
---|---|---|---|---|
Discriminative | MLPs | Classification, regression | Simple architecture, easy to implement, efficient for small datasets | Limited capacity for spatial/temporal information, not scalable for complex tasks |
CNNs | Signal representation, feature extraction | Good at extracting spatial features | Limited for temporal information without additional structures | |
RNNs | Sequential signal analysis, time-series prediction | Handles sequential and temporal dependencies well | Prone to vanishing/exploding gradient problems, less efficient for long sequences | |
Generative | AEs | Dimensionality reduction, anomaly detection | Good for feature extraction, data compression | Poor reconstruction with complex signals, requires tuning of latent space size |
GANs | RF signal generation, data augmentation, anomaly detection | Capable of generating realistic data | Difficult to train, sensitive to hyperparameters | |
DMs | Signal denoising, enhancement, and generative modeling | High quality in denoising and generating diverse data, robust training | Computationally intensive, slow to generate outputs compared to GANs | |
LLMs | Cross-modal RF sensing, sequence modeling | Excellent for capturing long-range dependencies, scalable, adaptable to different tasks (e.g., classification, localization) | Requires large datasets or well-pre-trained models, computationally expensive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, Q.D.M.; Lukito, W.D.; Liu, X.; Liu, C. Deep Learning-Empowered RF Sensing in Outdoor Environments: Recent Advances, Challenges, and Future Directions. Electronics 2025, 14, 125. https://doi.org/10.3390/electronics14010125
Nguyen QDM, Lukito WD, Liu X, Liu C. Deep Learning-Empowered RF Sensing in Outdoor Environments: Recent Advances, Challenges, and Future Directions. Electronics. 2025; 14(1):125. https://doi.org/10.3390/electronics14010125
Chicago/Turabian StyleNguyen, Quang D. M., William D. Lukito, Xuemeng Liu, and Chang Liu. 2025. "Deep Learning-Empowered RF Sensing in Outdoor Environments: Recent Advances, Challenges, and Future Directions" Electronics 14, no. 1: 125. https://doi.org/10.3390/electronics14010125
APA StyleNguyen, Q. D. M., Lukito, W. D., Liu, X., & Liu, C. (2025). Deep Learning-Empowered RF Sensing in Outdoor Environments: Recent Advances, Challenges, and Future Directions. Electronics, 14(1), 125. https://doi.org/10.3390/electronics14010125