Automatic Lower-Limb Length Measurement Network (A3LMNet): A Hybrid Framework for Automated Lower-Limb Length Measurement in Orthopedic Diagnostics
Abstract
:1. Introduction
- (a)
- Segment Femur and Tibia: In this step, the femur and tibia are identified from the X-ray data provided by CSU hospital. Details are described in Section 2.3.1.
- (b)
- Key point extraction: To measure the lower-limb length, key points must be identified on the femur and tibia. In this process, key points are accurately extracted from the segmented femur and tibia. Details are provided in Section 2.3.2.
- (c)
- Lower-Limb Length Measurement: The final step involves calculating the Euclidean distance between the extracted key points to obtain the final result. More information can be found in Section 2.3.3.
2. Materials and Methods
2.1. Dataset Preparation
2.2. Image Preprocessing
2.3. Proposed A3LMNet
- Semantic segmentation (for detail, see Section 2.3.1): first, the preprocessed lower-limb X-ray images are semantically segmented into two classes, the femur and tibia.
- Key point extraction (for detail, see Section 2.3.2): from the semantically segmented regions, we extract two key points necessary for the calculations.
- Lower-limb length calculation (for detail, see Section 2.3.3): to determine the lower-limb length on each side, we calculate the Euclidean distance between the key points on the left and right sides.
2.3.1. Femur and Tibia Segmentation
- i.
- Select the two largest femur and tibia regions:Let be the segmented image, where for femur and for tibia.
- ii.
- Identify connected regions:
- iii.
- Select the two largest regions:
- iv.
- Calculate the centroids of each femur and tibia regions:
- v.
- Classify, based on centroid coordinates:
2.3.2. Key Point Extraction for Determining Lower-Limb Length
- Left- and right-femur key points: the key points of the femur can be determined relatively easily. We need to identify the femoral head of the femur, which can be found at the highest y-coordinate point of .
- Left- and right-tibia key points: identifying the key points of the tibia requires a considerably more complex process. Simply locating the lowest point may yield incorrect coordinates, due to the presence of the medial malleolus. To address this, we developed a specific method to accurately identify the key points, ensuring precise measurement of lower-limb length. This approach guarantees the determination of the optimal points for accurate measurement. Each step of the method is indicated in Figure 6a.
- Find the lowest point of the tibia. (Purple points of Figure 6a).
- Extract the tibia region by up to 10% of its total length above the lowest point. (Orange lines in Figure 6a).
- Find the leftmost and rightmost points in the extracted . (Blue points of Figure 6a).
- Calculate the midpoint of the found points. (Green points of Figure 6).
- Find the lowest point in the tibia region corresponding to the x-coordinate of the midpoint. (Red points of Figure 6a).
2.3.3. Calculating the Euclidian Length Between Two Key Points
3. Results
3.1. Performance of Femur and Tibia Segmentation
3.2. Performance of the Key Point Extraction
3.3. Performance of Measuring the Lower-Limb Length
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Issei, M.; Mizuho, O.; Makoto, T. Effect of Leg Length Discrepancy on Dynamic Gait Stability. Prog. Rehabil. Med. 2023, 8, 20230013. [Google Scholar]
- Sam, K.; Eli, C. Relationship and Significance of Gait Deviations Associated with Limb Length Discrepancy: A Systematic Review. Gait Posture 2017, 57, 115–123. [Google Scholar]
- Martin, A.; Patrick, F.; Axel, K. Leg Length Discrepancy: A Systematic Review on the Validity and Reliability of Clinical Assessments. PLoS ONE 2021, 16, e0261457. [Google Scholar]
- Guichet, J.; Spivak, F.; Trouilloud, P.; Grammont, P. Lower Limb-Length Discrepancy: An Epidemiologic Study. Clin. Orthop. Relat. Res. 1991, 272, 235–241. [Google Scholar] [CrossRef]
- Sheha, E.; Steinhaus, M.; Kim, H.J.; Cunningham, M.; Fragomen, A.T.; Rozbruch, S.R. Leg-Length Discrepancy, Functional Scoliosis, and Low Back Pain. JBJS Rev. 2018, 6, e6. [Google Scholar] [CrossRef] [PubMed]
- Mekkawy, K.; Davis, T.; Sakalian, P.; Pino, A.; Corces, A.; Roche, M. Leg Length Discrepancy Before Total Knee Arthroplasty Is Associated with Increased Complications and Earlier Time to Revision. Arthroplasty 2024, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Starobrat, G.; Danielewicz, A.; Szponder, T.; Wojciak, M.; Sowa, I.; Różańska-Boczula, M.; Latalski, M. The Influence of Temporary Epiphysiodesis of the Proximal End of the Tibia on the Shape of the Knee Joint in Children Treated for Leg Length Discrepancy. Clin. Med. 2024, 13, 1458. [Google Scholar] [CrossRef] [PubMed]
- Nazmy, H.; Solitro, G.; Domb, B.; Amirouche, F. Comparative Study of Alternative Methods for Measuring Leg Length Discrepancy after Robot-Assisted Total Hip Arthroplasty. Bioengineering 2024, 11, 853. [Google Scholar] [CrossRef] [PubMed]
- Larson, N.; Nguyen, C.; Do, B.; Kaul, A.; Larson, A.; Wang, S.; Wang, E.; Bultman, E.; Stevens, K.; Pai, J.; et al. Artificial Intelligence System for Automatic Quantitative Analysis and Radiology Reporting of Leg Length Radiographs. J. Digit. Imaging 2022, 35, 1494–1505. [Google Scholar] [CrossRef]
- Shailam, R.; Jaramilo, D.; Kan, J.H. Growth Arrest and Leg-Length Discrepancy. Pediatr. Radiol. 2013, 43, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski, A.; Jain, V. Etiology of Lower Limb Deformity. In Pediatric Lower Limb Deformities; Springer International Publishing: Cham, Switzerland, 2024; pp. 3–17. [Google Scholar]
- Sabharwal, S.; Kumar, A. Methods for Assessing Leg Length Discrepancy. Clin. Orthop. Relat. Res. 2008, 466, 2910–2922. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, A. Leg Length Discrepancy: Assessment and Secondary Effects. Orthop. Rheumatol. 2017, 6, 1. [Google Scholar] [CrossRef]
- Eichler, J. Methodological Errors in Documenting Leg Length and Leg Length Discrepancies. In Leg Length Discrepancy: The Injured Knee; Springer: Berlin/Heidelberg, Germany, 1977; pp. 29–39. [Google Scholar]
- Birkenmaier, C.; Levrard, L.; Melcher, C.; Wegener, B.; Ricke, J.; Holzapfel, B.; Baur-Melnyk, A.; Mehrens, D. Distances and Angles in Standing Long-Leg Radiographs: Comparing Conventional Radiography, Digital Radiography, and EOS. Skelet. Radiol. 2024, 53, 1517–1528. [Google Scholar] [CrossRef] [PubMed]
- Christopher, H.W.; Gerety, E.L. Leg Length Measurement: The Discrepancy and Beyond. EPOS ECR 2019. 2019. Available online: https://epos.myesr.org/poster/esr/ecr2019/C-1654 (accessed on 1 December 2024).
- Liodakis, E.; Kenawey, M.; Doxastaki, I.; Krettek, C.; Haasper, C.; Hankemeier, S. Upright MRI Measurement of Mechanical Axis and Frontal Plane Alignment as a New Technique: A Comparative Study with Weight Bearing Full Length Radiographs. Skelet. Radiol. 2011, 40, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Moon, K.R.; Lee, B.D.; Lee, M.S. A Deep Learning Approach for Fully Automated Measurements of Lower Extremity Alignment in Radiographic Images. Sci. Rep. 2023, 13, 14692. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Blanco, M.; Sánchez, G.L.; Calvo-Lobo, J.M.; Gómez, E.A.; Morales, P.V.M. Radiographic Assessment of Lower-Limb Discrepancy. J. Am. Podiatr. Med. Assoc. 2017, 107, 393–398. [Google Scholar]
- Chua, C.; Tan, S.; Lim, A.; Hui, J. EOS Low-Dose Radiography: A Reliable and Accurate Upright Assessment of Lower-Limb Lengths. Arch. Orthop. Trauma Surg. 2022, 142, 735–745. [Google Scholar] [CrossRef]
- Park, K.R.; Lee, J.H.; Kim, D.S.; Ryu, H.; Kim, J.H.; Yon, C.J.; Lee, S.W. The Comparison of Lower Extremity Length and Angle between Computed Radiography-Based Teleoroentgenogram and EOS® Imaging System. Diagnostics 2022, 12, 1052. [Google Scholar] [CrossRef] [PubMed]
- Bhati, D.; Neha, F.; Amiruzzaman, M. A Survey on Explainable Artificial Intelligence (XAI) Techniques for Visualizing Deep Learning Models in Medical Imaging. J. Imaging 2024, 10, 239. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, L.; Yang, J.; Teng, F. Role of Artificial Intelligence in Medical Image Analysis: A Review of Current Trends and Future Directions. J. Med. Biol. Eng. 2024, 44, 231–243. [Google Scholar] [CrossRef]
- Mall, P.; Singh, P.; Srivastav, S.; Narayan, V.; Paprzycki, M.; Jaworska, T.; Ganzha, M. A Comprehensive Review of Deep Neural Networks for Medical Image Processing: Recent Developments and Future Opportunities. Healthc. Anal. 2023, 4, 100216. [Google Scholar] [CrossRef]
- Pinto-Coelho, L. How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. Bioengineering 2023, 10, 1435. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Jiang, Y.; Zhang, Y.; Zhu, H. Medical Image Analysis Using Deep Learning Algorithms. Front. Public Health 2023, 11, 1273253. [Google Scholar] [CrossRef] [PubMed]
- Salle, G.D.; Fanni, S.C.; Aghakhanyan, G.; Neri, E. Current Applications of AI in Medical Imaging. In Introduction to Artificial Intelligence. Imaging Informatics for Healthcare Professionals; Klontzas, M.E., Fanni, S.C., Neri, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 151–165. [Google Scholar]
- Younas, F.; Usman, M.; Yan, W.Q. A Deep Ensemble Learning Method for Colorectal Polyp Classification with Optimized Network Parameters. Appl. Intell. 2023, 53, 2410–2433. [Google Scholar] [CrossRef]
- Szilágyi, L.; Kovács, L. Special Issue: Artificial Intelligence Technology in Medical Image Analysis. Appl. Sci. 2024, 14, 2180. [Google Scholar] [CrossRef]
- Flory, M.N.; Napel, S.; Tsai, E.B. Artificial Intelligence in Medical Imaging: Opportunities and Challenges. Semin. Ultrasound CT MRI 2024, 45, 152–160. [Google Scholar] [CrossRef]
- Kübler, J.; Brendel, J.; Küstner, T.; Walterspiel, J.; Hagen, F.; Paul, J.; Nikolaou, K.; Gassenmaier, S.; Tsiflikas, I.; Burgstahler, C.; et al. Artificial Intelligence-Enhanced Detection of Subclinical Coronary Artery Disease in Athletes: Diagnostic Performance and Limitations. Int. J. Cardiovasc. Imaging 2024, 40, 2503–2511. [Google Scholar] [CrossRef] [PubMed]
- Gala, D.; Behl, H.; Shah, M.; Makaryus, A. The Role of Artificial Intelligence in Improving Patient Outcomes and Future of Healthcare Delivery in Cardiology: A Narrative Review of the Literature. Healthcare 2024, 12, 481. [Google Scholar] [CrossRef] [PubMed]
- Erne, F.; Grover, P.; Dreischarf, M.; Reumann, M.K.; Saul, D.; Histing, T.; Nüssler, A.K.; Springer, F.; Scholl, C. Automated Artificial Intelligence-Based Assessment of Lower Limb Alignment Validated on Weight-Bearing Pre- and Postoperative Full-Leg Radiographs. Diagnostics 2022, 12, 2679. [Google Scholar] [CrossRef]
- Sun, T.; Wang, J.; Suo, M.; Liu, X.; Huang, H.; Zhang, J.; Zhang, W.; Li, Z. The Digital Twin: A Potential Solution for the Personalized Diagnosis and Treatment of Musculoskeletal System Diseases. Bioengineering 2023, 10, 627. [Google Scholar] [CrossRef]
- Ali, A.; Omid, A.; Hamid, K.; Nathalie, B.; Massimo, S.; Filippo, M.; Rajendra, A. Interpretation of Artificial Intelligence Models in Healthcare. J. Ultrasound Med. 2024, 43, 1789–1818. [Google Scholar]
- Tang, D.; Chen, J.; Ren, L.; Wang, X.; Li, D.; Zhang, H. Reviewing CAM-Based Deep Explainable Methods in Healthcare. Appl. Sci. 2024, 14, 4124. [Google Scholar] [CrossRef]
- Obuchowicz, R.; Strzelecki, M.; Piórkowski, A. Clinical Applications of Artificial Intelligence in Medical Imaging and Image Processing—A Review. Cancers 2024, 16, 1870. [Google Scholar] [CrossRef] [PubMed]
- Raju, V.; Sakshi, D.; Abhisek, V. Artificial Intelligence (AI): A Potential Game Changer in Regenerative Orthopedics—A Scoping Review. Indian J. Orthpaedics 2024, 58, 1362–1374. [Google Scholar]
- Lee, S.J.; Lee, H.J.; Kim, J.I.; Oh, K.J. Measurement of the Weight-Bearing Standing Coronal and Sagittal Axial Alignment of Lower Extremity in Young Korean Adults. J. Korean Orthop. Assoc. 2011, 46, 191–199. [Google Scholar] [CrossRef]
- Guggenberger, R.; Pfirrmann, C.; Koch, P.; Buck, R. Assessment of Lower Limb Length and Alignment by Biplanar Linear Radiography—Comparison with Supine CT and Upright Full-Length Radiography. Am. J. Roentgenol. 2014, 202, W161–W167. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Xiong, W.; Zhang, H.; Sun, Z.; Ma, J.; Ma, X.; Zhang, S.; Guo, S.; Wang, Y. Automatic Segmentation of the Femur and Tibia Bones from X-ray Images Based on Pure Dilated Residual U-Net. Inverse Probl. Imaging 2021, 15, 1333–1346. [Google Scholar] [CrossRef]
- Lee, C.S.; Lee, M.S.; Byon, S.S.; Kim, S.H.; Lee, B.I.; Lee, B.D. Computer-Aided Automatic Measurement of Leg Length on Full Leg Radiographs. Skelet. Radiol. 2021, 51, 1007–1016. [Google Scholar] [CrossRef]
- Zheng, Q.; Shellikeri, S.; Huang, H.; Hwang, M.; Sze, R.W. Deep Learning Measurement of Leg Length Discrepancy in Children Based on Radiographs. Radiology 2020, 296, 152–158. [Google Scholar] [CrossRef] [PubMed]
Class | Mean Accuracy (σ) | Mean IOU (σ) | BF1 Score |
---|---|---|---|
Femur | 0.958 (0.018) | 0.982 (0.011) | 0.970 |
Tibia | 0.963 (0.015) | 0.984 (0.009) | 0.973 |
Test Data Number | Ground Truth (mm) | Measured Length (mm) | Deviation (mm) | |||
---|---|---|---|---|---|---|
Left | Right | Left | Right | Left | Right | |
1 | 793.2 | 787.2 | 792.94 | 787.43 | 0.26 | 0.23 |
2 | 828.6 | 827.5 | 830.56 | 826.74 | 1.96 | 0.76 |
3 | 790.6 | 784.5 | 790.09 | 783.66 | 0.51 | 0.84 |
4 | 889.6 | 886.0 | 892.12 | 883.52 | 2.52 | 2.48 |
5 | 815.9 | 817.2 | 817.05 | 816.43 | 1.15 | 0.77 |
6 | 852.4 | 860.2 | 849.73 | 858.08 | 2.67 | 2.12 |
7 | 743.9 | 725.9 | 743.59 | 724.90 | 0.31 | 1.00 |
8 | 756.9 | 781.7 | 755.65 | 783.79 | 1.25 | 2.09 |
9 | 766.9 | 763.6 | 766.93 | 766.54 | 0.03 | 2.94 |
10 | 691.5 | 694.7 | 693.27 | 694.83 | 1.77 | 0.13 |
Mean | - | - | - | - | 1.57 | 1.45 |
Test Data Number | Ground Truth (x, y) | Extracted Key Points (x, y) | Deviation | |||
---|---|---|---|---|---|---|
1 | (516, 6901) | (1460, 6854) | (523, 6899) | (1445, 6860) | 7.28 | 16.15 |
(841, 798) | (1207, 809) | (859, 813) | (1219, 805) | 23.43 | 12.65 | |
2 | (619, 6952) | (1584, 6921) | (601, 6954) | (1570, 6922) | 18.11 | 14.04 |
(863, 917) | (1213, 917) | (875, 914) | (1195, 922) | 12.37 | 18.68 | |
3 | (556, 6982) | (1474, 6922) | (531, 6985) | (1468, 6930) | 25.18 | 10.00 |
(519, 940) | (1307, 940) | (539, 953) | (1289, 953) | 23.85 | 22.20 | |
4 | (546, 6659) | (1532, 6613) | (531, 6665) | (1523, 6625) | 16.16 | 15.00 |
(788, 1125) | (1181, 1125) | (797, 1125) | (1172, 1148) | 9.00 | 24.70 | |
5 | (470, 7048) | (1488, 7110) | (453, 7047) | (1460, 7102) | 17.03 | 29.12 |
(920, 975) | (1266, 1005) | (930, 969) | (1258, 1000) | 11.66 | 9.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rhyou, S.-Y.; Cho, Y.; Yoo, J.; Hong, S.; Bae, S.; Bae, H.; Yu, M. Automatic Lower-Limb Length Measurement Network (A3LMNet): A Hybrid Framework for Automated Lower-Limb Length Measurement in Orthopedic Diagnostics. Electronics 2025, 14, 160. https://doi.org/10.3390/electronics14010160
Rhyou S-Y, Cho Y, Yoo J, Hong S, Bae S, Bae H, Yu M. Automatic Lower-Limb Length Measurement Network (A3LMNet): A Hybrid Framework for Automated Lower-Limb Length Measurement in Orthopedic Diagnostics. Electronics. 2025; 14(1):160. https://doi.org/10.3390/electronics14010160
Chicago/Turabian StyleRhyou, Se-Yeol, Yongjin Cho, Jaechern Yoo, Sanghoon Hong, Sunghoon Bae, Hyunjae Bae, and Minyung Yu. 2025. "Automatic Lower-Limb Length Measurement Network (A3LMNet): A Hybrid Framework for Automated Lower-Limb Length Measurement in Orthopedic Diagnostics" Electronics 14, no. 1: 160. https://doi.org/10.3390/electronics14010160
APA StyleRhyou, S.-Y., Cho, Y., Yoo, J., Hong, S., Bae, S., Bae, H., & Yu, M. (2025). Automatic Lower-Limb Length Measurement Network (A3LMNet): A Hybrid Framework for Automated Lower-Limb Length Measurement in Orthopedic Diagnostics. Electronics, 14(1), 160. https://doi.org/10.3390/electronics14010160