A Digital Twin System for the Sitting-to-Standing Motion of the Knee Joint
Abstract
1. Introduction
2. Materials and Methods
2.1. Analysis of Relationship Between Knee Joint Torque and Posture
- Young adults (25–35 years): n = 4.
- Middle-aged adults (36–55 years): n = 3.
- Older adults (56–75 years): n = 3.
2.2. Knee Joint Finite Element Model Construction
2.3. Digital Fusion and Visualization
2.4. Real-Time Data Acquisition
3. Results
- Peak knee torque demonstrated strong positive correlation with body weight across all participants:
- -
- Lightweight participants (55–65 kg, n = 3): 118.5 ± 8.2 N·m.
- -
- Mediumweight participants (66–75 kg, n = 4): 136.7 ± 12.1 N·m.
- -
- Heavyweight participants (76–92 kg, n = 3): 152.8 ± 15.3 N·m (p < 0.01).
- Anthropometric correlations with biomechanical parameters:
- -
- Body weight was strongly correlated with peak knee torque (r = 0.89, p < 0.001).
- -
- BMI was significantly associated with joint loading duration (r = 0.72, p < 0.01).
- -
- Height showed moderate correlation with angle at peak torque (r = 0.58, p < 0.05).
- Gender-based differences were observed in movement patterns:
- -
- Male participants (n = 6) exhibited higher peak torque values (142.3 ± 16.8 N·m) compared to females (n = 4, 128.7 ± 11.2 N·m, p < 0.05).
- -
- Female participants demonstrated earlier peak torque occurrence (at 143.2° ± 3.1°) compared to males (at 147.8° ± 2.8°, p < 0.05).
- Age-group specific biomechanical characteristics:
- -
- Young adults (25–35 years) showed the most consistent torque patterns with minimal inter-individual variation.
- -
- The baseline framework derived from young adults provides a reference standard for comparison with middle-aged and elderly populations.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andriacchi, T.P.; Mundermann, A. The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis. Curr. Opin. Rheumatol. 2006, 18, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Wei, P.; Guo, J.; Liu, S.; Li, X.; Huang, L.; Wu, H.; Sun, J. Current status and influencing factors of social frailty in elderly patients with knee osteoarthritis in the community. Evid. Based Nurs. 2023, 9, 1095–1100. [Google Scholar]
- Beynnon, B.D.; Johnson, R.J.; Abate, J.A.; Fleming, B.C.; Nichols, C.E. Treatment of anterior cruciate ligament injuries, part I. Am. J. Sports Med. 2005, 33, 1579–1602. [Google Scholar] [CrossRef] [PubMed]
- Corral-Acero, J.; Margara, F.; Marciniak, M.; Rodero, C.; Loncaric, F.; Feng, Y.; Gilbert, A.; Fernandes, J.F.; Bukhari, H.A.; Wajdan, A.; et al. The “digital twin” to enable the vision of precision cardiology. Eur. Heart J. 2020, 41, 4556–4564. [Google Scholar] [CrossRef]
- Deng, T.; Zhang, K.; Shen, Z. A systematic review of a digital twin city: A new pattern of urban governance toward smart cities. J. Manag. Sci. Eng. 2021, 6, 125–134. [Google Scholar] [CrossRef]
- Fukubayashi, T.; Kurosawa, H. The contact area and pressure distribution pattern of the knee: A study of normal and osteoarthritic knee joints. Acta Orthop. Scand. 2009, 51, 871–879. [Google Scholar] [CrossRef]
- Febrer-Nafria, M.; Dreyer, M.J.; Maas, A.; Taylor, W.R.; Smith, C.R.; Hosseini Nasab, S.H. Knee kinematics are primarily determined by implant alignment but knee kinetics are mainly influenced by muscle coordination strategy. J. Biomech. 2023, 161, 111851. [Google Scholar] [CrossRef]
- Yan, M.; Liang, T.; Zhao, H.; Bi, Y.; Wang, T.; Yu, T.; Zhang, Y. Model properties and clinical application in the Finite element analysis of knee Joint: A review. Orthop. Surg. 2024, 16, 289–302. [Google Scholar] [CrossRef]
- Yang, K.; Pandy, M.G. Recent Developments in Computational Modelling of the Knee. Osteoarthr. Imaging 2024, 4, 100244. [Google Scholar] [CrossRef]
- Abdullah, M.; Hulleck, A.A.; Katmah, R.; Khalaf, K.; El-Rich, M. Multibody dynamics-based musculoskeletal modeling for gait analysis: A systematic review. J. Neuroeng. Rehabil. 2024, 21, 178. [Google Scholar] [CrossRef]
- Esrafilian, A.; Chandra, S.S.; Gatti, A.A.; Nissi, M.; Mustonen, A.M.; Säisänen, L.; Reijonen, J.; Nieminen, P.; Julkunen, P.; Töyräs, J.; et al. An automated and robust tool for musculoskeletal and finite element modeling of the knee joint. IEEE Trans. Biomed. Eng. 2024, 72, 56–69. [Google Scholar] [CrossRef]
- Shu, L.; Yamamoto, K.; Yoshizaki, R.; Yao, J.; Sato, T.; Sugita, N. Multiscale finite element musculoskeletal model for intact knee dynamics. Comput. Biol. Med. 2022, 141, 105023. [Google Scholar] [CrossRef]
- Grieves, M. Digital twin: Manufacturing excellence through virtual factory replication. White Pap. 2014, 1, 1–7. [Google Scholar]
- Hu, G.; Wang, L.; Zhang, L. Development of digital twin technology under the background of digitalization. Qual. Certif. 2024, 36–38. [Google Scholar] [CrossRef]
- Hong, J.; Jiang, Q.; Huang, C.B.; Huang, Y.H.; Li, W.B. Visual analysis of the application of finite element analysis method in sports biomechanics. J. Hubei Norm. Univ. (Nat. Sci. Ed.) 2023, 43, 80–87. [Google Scholar]
- Huang, L.; Huang, X.; Li, S.; Hou, G. Research on registration error compensation of large-scale measurement field based on neural network. Rev. Sci. Instrum. 2023, 94, 065012. [Google Scholar] [CrossRef] [PubMed]
- Saxby, D.J.; Pizzolato, C.; Diamond, L.E. A digital twin framework for precision neuromusculoskeletal health care: Extension upon industrial standards. J. Appl. Biomech. 2023, 39, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Bottin, F.; Viceconti, M.; Davico, G. Image-Based Musculoskeletal Models to Accurately Reproduce a Maximum Voluntary Isometric Contraction Test In Silico. Appl. Sci. 2024, 14, 8678. [Google Scholar] [CrossRef]
- Hoyer, G.; Gao, K.T.; Gassert, F.G.; Luitjens, J.; Jiang, F.; Majumdar, S.; Pedoia, V. Foundations of a knee joint digital twin from qMRI biomarkers for osteoarthritis and knee replacement. npj Digit. Med. 2025, 8, 118. [Google Scholar] [CrossRef]
- Andres, A.; Roland, M.; Wickert, K.; Diebels, S.; Stöckl, J.; Herrmann, S.; Reinauer, F.; Leibinger, R.; Pavlov, A.; Schuppener, L.; et al. Advantages of digital twin technology in orthopedic trauma Surgery–Exploring different clinical use cases. Sci. Rep. 2025, 15, 19987. [Google Scholar] [CrossRef]
- Diniz, P.; Grimm, B.; Garcia, F.; Fayad, J.; Ley, C.; Mouton, C.; Oeding, J.F.; Hirschmann, M.T.; Samuelsson, K.; Seil, R. Digital twin systems for musculoskeletal applications: A current concepts review. Knee Surg. Sports Traumatol. Arthrosc. 2025, 33, 1892–1910. [Google Scholar] [CrossRef]
- He, X.; Qiu, Y.; Lai, X.; Li, Z.; Shu, L.; Sun, W.; Song, X. Towards a shape-performance integrated digital twin for lumbar spine analysis [version 1; peer review: 1 approved, 1 not approved]. Digit. Twin. 2021, 1, 8. [Google Scholar] [CrossRef]
- Jafarnezhadgero, A.; Esmaeili, A.; Mousavi, S.H.; Granacher, U. Effects of foot orthoses application during walking on lower limb joint angles and moments in adults with flat feet: A systematic review with meta-analysis. J. Biomech. 2024, 176, 112345. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, V.; Orozco, G.A.; Pierantoni, M.; Dejea, H.; Gustafsson, A.; Grassi, L.; Isaksson, H. Influence of articular cartilage sample geometry on mechanical response and properties using finite element simulation. J. Biomech. 2024, 176, 112323. [Google Scholar] [CrossRef] [PubMed]
- Charles, J.P.; Grant, B.; D’Août, K.; Bates, K.T. Subject-specific muscle properties from diffusion tensor imaging significantly improve the accuracy of musculoskeletal models. J. Anat. 2020, 237, 941–959. [Google Scholar] [CrossRef]
- Lin, R.; Li, Q.J.; Yang, C.; Qu, F.; Wan, X.L. Effect of stair slope on biomechanical characteristics of knee joint when healthy adults walk upstairs. Chin. J. Sports Med. 2023, 42, 359–365. [Google Scholar] [CrossRef]
- Liu, D.; Ren, Y.; Zhao, S.; Lu, A. Study on the changes of lower limb joint torque in overweight people during landing from different heights. J. Nanjing Inst. Phys. Educ. 2020, 19, 46–53. [Google Scholar]
- Li, P.X.; Zhao, G.P.; Xia, F.Y.; Yang, J.J.; Xu, H.F.; Ma, T.; Tu, Y.H. Finite element analysis of biomechanical characteristics of unicompartmental knee replacement for anterior cruciate ligament rupture. Med. Biomech. 2020, 35, 70–76. [Google Scholar]
- Needham, L.; Evans, M.; Wade, L.; Cosker, D.P.; McGuigan, M.P.; Bilzon, J.L.; Colyer, S.L. The development and evaluation of a fully automated markerless motion capture workflow. J. Biomech. 2022, 144, 111338. [Google Scholar] [CrossRef]
- Niederer, S.A.; Sacks, M.S.; Girolami, M.; Willcox, K. Scaling digital twins from the artisanal to the industrial. Nat. Comput. Sci. 2021, 1, 313–320. [Google Scholar] [CrossRef]
- Nijmeijer, E.M.; Heuvelmans, P.; Bolt, R.; Gokeler, A.; Otten, E.; Benjaminse, A. Concurrent validation of the Xsens IMU system of lower-body kinematics in jump-landing and change-of-direction tasks. J. Biomech. 2023, 154, 111637. [Google Scholar] [CrossRef]
- Verdouw, C.; Tekinerdogan, B.; Beulens, A.; Wolfert, S. Digital twins in smart farming. Agric. Syst. 2021, 189, 103046. [Google Scholar] [CrossRef]
- Pena, E.; Calvo, B.; Martinez, M.A.; Doblare, M. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J. Biomech. 2006, 39, 1686–1701. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Digital twin: Origin to future. Appl. Syst. Innov. 2021, 4, 36. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Zhao, Y.; Zhou, Y.; Jiang, J. Human visual attention mechanism-inspired point-and-line stereo visual odometry for environments with unevenly distributed features. Chin. J. Mech. Eng. 2023, 36, 62. [Google Scholar] [CrossRef]
- Xie, J.; Jiang, C.; Liu, C.; Wu, R.Y. Biomechanical effects of moderate-speed running on the knee joint at different slopes. Med. Biomech. 2021, 36 (Suppl. S1), 367. [Google Scholar]
- Xie, H.; Wang, X. Correlation analysis between age and BMI and knee joint dysfunction in middle-aged and elderly people. Bull. Sports Sci. Technol. 2023, 31, 108–111+196. [Google Scholar] [CrossRef]
Parameter | Mean ± SD | Range |
---|---|---|
Age (years) | 48.7 ± 16.2 | 25–75 |
Height (cm) | 170.3 ± 8.1 | 158–185 |
Weight (kg) | 71.2 ± 12.5 | 55–92 |
BMI (kg/m2) | 24.8 ± 3.7 | 20.1–30.8 |
Gender (Male/Female) | 6/4 | - |
Knee Angle (β) | F1/N | F2/N | F3/N | Knee Joint Torque (Mknee)/N·m | p |
---|---|---|---|---|---|
107° | 100 ± 10 | 150 ± 9 | 200 ± 11 | 30.4 ± 3.2 | 0.12 |
140° | 120 ± 5 | 180 ± 6 | 240 ± 6 | 136.7 ± 3.7 | 0.11 |
179° | 140 ± 8 | 210 ± 7 | 280 ± 8 | 98.2 ± 3.4 | 0.18 |
Knee Angle/° | 110 | 120 | 140 | 145 | 147 | 149 | 161 | 165 | 173 | 180 |
---|---|---|---|---|---|---|---|---|---|---|
Knee moment/(N·m) | 46 | 107 | 136 | 125 | 127 | 111 | 114 | 117 | 97 | 98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Sun, L.; Sun, C.; Chen, Z.; Li, J.; Su, P. A Digital Twin System for the Sitting-to-Standing Motion of the Knee Joint. Electronics 2025, 14, 2867. https://doi.org/10.3390/electronics14142867
Liu T, Sun L, Sun C, Chen Z, Li J, Su P. A Digital Twin System for the Sitting-to-Standing Motion of the Knee Joint. Electronics. 2025; 14(14):2867. https://doi.org/10.3390/electronics14142867
Chicago/Turabian StyleLiu, Tian, Liangzheng Sun, Chaoyue Sun, Zhijie Chen, Jian Li, and Peng Su. 2025. "A Digital Twin System for the Sitting-to-Standing Motion of the Knee Joint" Electronics 14, no. 14: 2867. https://doi.org/10.3390/electronics14142867
APA StyleLiu, T., Sun, L., Sun, C., Chen, Z., Li, J., & Su, P. (2025). A Digital Twin System for the Sitting-to-Standing Motion of the Knee Joint. Electronics, 14(14), 2867. https://doi.org/10.3390/electronics14142867