Open AccessArticle
Data Driven Analytics for Distribution Network Power Supply Reliability Assessment Method Considering Frequency Regulating Scenario
by
Yu Zhang, Jinyue Shi, Shicheng Huang, Liang Geng, Zexiong Wang, Hao Sun, Qingguang Yu, Xin Yao, Ding Liu, Weihua Zuo, Min Guo and Xiaoyu Che
Electronics 2025, 14(20), 4009; https://doi.org/10.3390/electronics14204009 (registering DOI) - 13 Oct 2025
Abstract
Islanded microgrids face significant frequency stability challenges due to limited system capacity, low inertia levels, and the strong variability in renewable energy sources. Traditional reliability assessment methods, often based on static power balance, struggle to comprehensively reflect frequency dynamic characteristics and their impact
[...] Read more.
Islanded microgrids face significant frequency stability challenges due to limited system capacity, low inertia levels, and the strong variability in renewable energy sources. Traditional reliability assessment methods, often based on static power balance, struggle to comprehensively reflect frequency dynamic characteristics and their impact on power supply reliability. To address this issue, this paper proposes a sequential Monte Carlo reliability assessment method integrated with a system frequency response model. First, an SFR model for the isolated microgrid, incorporating diesel generators, gas turbines, energy storage, and wind turbines, is established. For synchronous units, a frequency deviation-based failure rate correction mechanism is introduced to characterize the impact of frequency fluctuations on equipment reliability. State transitions are achieved by integrating failure and repair rates to reach threshold values. Second, sequential Monte Carlo simulation is employed to conduct time-series simulations of annual operation. Random sampling of unit failure and repair times is used to calculate reliability metrics. MATLAB/Simulink simulation results demonstrate that system frequency fluctuations caused by power imbalance worsen unit failure rates, leading to microgrid reliability values lower than static calculations. This provides reference for planning, design, and operational scheduling of isolated microgrids.
Full article
►▼
Show Figures