Development of a SPICE Model for Fabricated PLA/Al/Egg Albumin/Al Memristors Using Joglekar’s Approach
Abstract
:1. Introduction
- The Joglekar memristor model is used to build egg albumin memristors at the SPICE level. The model’s parameters are adjusted based on the parameters that are taken from the experimental data.
- Discussing and summarizing the effects of altering the various SPICE model parameters.
- Understanding how important parameters affect the hysteresis loop. Therefore, a set of parameters is presented to describe quantification of the hysteresis loops in the I–V plane.
2. Fabrication and Electrical Characterization of PLA/Al/Egg Albumin/Al Memristor
2.1. Fabrication Process
2.2. Electrical Characterization
3. SPICE-Level Framework for Proposed Memristors
3.1. SPICE Models
3.1.1. Joglekar Model
3.1.2. Knowm Memristor Model
3.1.3. Biolek Memristor Model
3.2. Joglekar Memristor Model and SPICE Subcircuit
3.3. Extraction of Hysteresis Loop-Based Parameters
- a.
- Measure the maximum voltage of the pinched hysteresis loop for both the positive and negative half-cycles.
- b.
- Calculate half of the maximum voltage for each cycle.
- c.
- Draw a line that divides the positive and negative parts of the pinched hysteresis loop equally, based on half of the maximum voltage.
- d.
- Select two vertical points from the line drawn between the two half-cycles; these points are referred to as .
- e.
- Determine the midpoint of the two vertical points by dividing for each half-cycle.
- f.
- Draw a line between the midpoints of the two vertical positions to calculate for each half-cycle.
4. Results and Discussion
4.1. Calibration of SPICE Simulation Framework
4.2. Analysis of Key Parameters of the Calibrated SPICE Model
5. Conclusions and Future Scope
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Memristor SPICE Model
References
- Zhu, Y.; Mao, H.; Zhu, Y.; Wang, X.; Fu, C.; Ke, S.; Wan, C.; Wan, Q. CMOS-compatible neuromorphic devices for neuromorphic perception and computing: A review. Int. J. Extrem. Manuf. 2023, 5, 042010. [Google Scholar] [CrossRef]
- Lai, Y.L.; Chiang, W.J. Characteristics of System in a Package of Synchronous Dynamic Random Access Memory for High-Speed Data Storage Applications. IEEE Trans. Magn. 2014, 50, 1–5. [Google Scholar] [CrossRef]
- Jooq, M.K.Q.; Moaiyeri, M.H.; Al-Shidaifat, A.; Song, H. Ultra-Efficient and Robust Auto-Nonvolatile Schmitt Trigger-Based Latch Design Using Ferroelectric CNTFET Technology. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 1829–1840. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, M.; Chauhan, Y.S.; Sahay, S. Efficient Implementation of Mahalanobis Distance on Ferroelectric FinFET Crossbar for Outlier Detection. IEEE J. Electron Devices Soc. 2024, 12, 516–524. [Google Scholar] [CrossRef]
- Cheng, X.L.; Yin, W.; Feng, Z.G.; Liang, T.Y. Simulation on A Novel Ga-doped Phase Change Memory for Next Generation Embedded Non-Volatile Memory Application. In Proceedings of the 2008 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, Cambridge, MA, USA, 5–7 May 2008; pp. 43–48. [Google Scholar] [CrossRef]
- Berdan, R.; Lim, C.; Khiat, A.; Papavassiliou, C.; Prodromakis, T. A Memristor SPICE Model Accounting for Volatile Characteristics of Practical ReRAM. IEEE Electron Device Lett. 2014, 35, 135–137. [Google Scholar] [CrossRef]
- Reddy, L.H.; Pande, S.R.; Roy, T.; Vogel, E.M.; Chakravorty, A.; Chakrabarti, B. A SPICE compact model for forming-free, low-power graphene-insulator-graphene ReRAM technology. Emergent Mater. 2021, 4, 1055–1065. [Google Scholar] [CrossRef]
- Du, N.; Schmidt, H.; Polian, I. Low-power emerging memristive designs towards secure hardware systems for applications in internet of things. Nano Mater. Sci. 2021, 3, 186–204. [Google Scholar] [CrossRef]
- Chua, L. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Strukov, D.; Snider, G.; Stewart, D.; Williams, S. The Missing Memristor Found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- He, X.; Zhang, J.; Wang, W.; Xuan, W.; Wang, X.; Zhang, Q.; Smith, C.G.; Luo, J. Transient Resistive Switching Devices Made from Egg Albumen Dielectrics and Dissolvable Electrodes. ACS Appl. Mater. Interfaces 2016, 8, 10954–10960. [Google Scholar] [CrossRef]
- Pabst, O.; Martinsen, Ø.G.; Chua, L. Information can be stored in the human skin memristor which has non-volatile memory. Sci. Rep. 2019, 9, 19260. [Google Scholar] [CrossRef] [PubMed]
- Volkov, A.G.; Reedus, J.; Mitchell, C.M.; Tuckett, C.; Volkova, M.I.; Markin, V.S.; Chua, L. Memory elements in the electrical network of Mimosa pudica L. Plant Signal. Behav. 2014, 9, e982029. [Google Scholar] [CrossRef] [PubMed]
- Chua, L. If it’s pinched it’s a memristor. Semicond. Sci. Technol. 2014, 29, 104001. [Google Scholar] [CrossRef]
- Zhao, E.; Jiang, J.; Liu, G.; Wang, C.; Zhou, C.; Zhang, Z. Organic polymer artificial synapse device based on amylum memristor. J. Mater. Sci. Mater. Electron. 2023, 34, 1688. [Google Scholar] [CrossRef]
- Ho, H.H.D.; Nguyen, N.H.; Nguyen, N.B.; Le, V.K.; Nguyen, N.U.T.; Le Hoang Doan, T.; Nguyen, L.H.T.; Nguyen, T.H.; Pham, N.K. Development of switching memory devices of cellulose fibers from lotus petioles. J. Mater. Sci. Mater. Electron. 2024, 35, 387. [Google Scholar] [CrossRef]
- Sueoka, B.; Hasan Tanim, M.M.; Williams, L.; Xiao, Z.; Seah, Y.Z.; Cheong, K.Y.; Zhao, F. A synaptic memristor based on natural organic honey with neural facilitation. Org. Electron. 2022, 109, 106622. [Google Scholar] [CrossRef]
- Gale, E.; Adamatzky, A.; De Lacy Costello, B. Slime Mould Memristors. BioNanoScience 2014, 5, 1–8. [Google Scholar] [CrossRef]
- Johnsen, G.K. An introduction to the memristor – a valuable circuit element in bioelectricity and bioimpedance. J. Electr. Bioimpedance 2012, 3, 20–28. [Google Scholar] [CrossRef]
- Hota, M.K.; Bera, M.K.; Kundu, B.; Kundu, S.C.; Maiti, C.K. A Natural Silk Fibroin Protein-Based Transparent Bio-Memristor. Adv. Funct. Mater. 2012, 22, 4493–4499. [Google Scholar] [CrossRef]
- Chen, Y.C.; Yu, H.C.; Huang, C.Y.; Chung, W.L.; Wu, S.L.; Su, Y.K. Nonvolatile Bio-Memristor Fabricated with Egg Albumen Film. Sci. Rep. 2015, 5, 10022. [Google Scholar] [CrossRef]
- Bok, C.; Woo, S.; Chaoxing, W.; Park, J.; Kim, T.W. Flexible bio-memristive devices based on chicken egg albumen:Au@SiO2 core-shell nanoparticle nanocomposites. Sci. Rep. 2017, 7, 12033. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Li, X.; Zhou, Z.; Zhao, J.; Wang, H.; Wang, J.; Zhang, L.; Ren, D.; Zhang, X.; Chen, J.; et al. Flexible Transparent Organic Artificial Synapse Based on the Tungsten/Egg Albumen/Indium Tin Oxide/Polyethylene Terephthalate Memristor. ACS Appl. Mater. Interfaces 2019, 11, 18654–18661. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, H.; Goswami, R.; Kumar, G.; Kakoty, N.M. Memristors as Prospective Devices for Silicon and Post-Silicon Eras: Theory, Applications and Perspectives. In Nanoelectronic Devices and Applications; Lenka, T.R., Nguyen, H.P.T., Eds.; Bentham Science: Singapore, 2024. [Google Scholar]
- Vourkas, I.; Batsos, A.; Sirakoulis, G.C. SPICE modeling of nonlinear memristive behavior. Int. J. Circuit Theory Appl. 2015, 43, 553–565. [Google Scholar] [CrossRef]
- Li, H.; Huang, P.; Gao, B.; Chen, B.; Liu, X.; Kang, J. A SPICE Model of Resistive Random Access Memory for Large-Scale Memory Array Simulation. IEEE Electron Device Lett. 2014, 35, 211–213. [Google Scholar] [CrossRef]
- Yakopcic, C.; Taha, T.M.; Subramanyam, G.; Pino, R.E. Generalized Memristive Device SPICE Model and its Application in Circuit Design. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2013, 32, 1201–1214. [Google Scholar] [CrossRef]
- Li, B.; Shi, G. A Native SPICE Implementation of Memristor Models for Simulation of Neuromorphic Analog Signal Processing Circuits. ACM Trans. Des. Autom. Electron. Syst. 2021, 27, 1–24. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.D.; Choi, S.J. Compact Two-State-Variable Second-Order Memristor Model. Small 2016, 12, 3320–3326. [Google Scholar] [CrossRef]
- Joglekar, Y.N.; Wolf, S.J. The elusive memristor: Properties of basic electrical circuits. Eur. J. Phys. 2009, 30, 661. [Google Scholar] [CrossRef]
- Yakopcic, C.; Taha, T.; Subramanyam, G.; Pino, R. Memristor SPICE Modeling. In Advances in Neuromorphic Memristor Science and Applications; Springer: Dordrecht, The Netherlands, 2012; pp. 211–244. [Google Scholar] [CrossRef]
- Biolek, D.; Biolek, Z.; Biolková, V. PSPICE Modeling of Meminductor. Analog. Integr. Circuits Signal Process. 2011, 66, 129–137. [Google Scholar] [CrossRef]
- Martinsen, Ø.G.; Grimnes, S.; Lütken, C.A.; Johnsen, G.K. Memristance in human skin. J. Phys. Conf. Ser. 2010, 224, 012071. [Google Scholar] [CrossRef]
- Volkov, A.G.; Tucket, C.; Reedus, J.; Volkova, M.I.; Markin, V.S.; Chua, L. Memristors in plants. Plant Signal. Behav. 2014, 9, e28152. [Google Scholar] [CrossRef] [PubMed]
- Volkov, A.G.; Nyasani, E.K.; Blockmon, A.L.; Volkova, M.I. Memristors: Memory elements in potato tubers. Plant Signal. Behav. 2015, 10, e1071750. [Google Scholar] [CrossRef] [PubMed]
- Volkov, A.G.; Nyasani, E.K.; Tuckett, C.; Greeman, E.A.; Markin, V.S. Electrophysiology of pumpkin seeds: Memristors in vivo. Plant Signal. Behav. 2016, 11, e1151600. [Google Scholar] [CrossRef] [PubMed]
- Goswami, R.; Deb, A.; Rathi, R.D.; Mahajan, P. Design and Analyses of a Food Protein Sensing System Based on Memristive Properties. In Electrical and Electronic Devices, Circuits, and Materials; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; Chapter 6; pp. 101–118. [Google Scholar] [CrossRef]
- Qin, J.; Sun, B.; Zhou, Y.; Du, J.; Cao, Z.; Mao, S.; Yang, Y.; Liu, M.; Rao, Z.; Ke, C.; et al. Evolution between RS and NRS behaviors in BiFeO3@egg albumen nanocomposite based memristor. Curr. Appl. Phys. 2024, 59, 77–84. [Google Scholar] [CrossRef]
- Ostrovskii, V.; Fedoseev, P.; Bobrova, Y.; Butusov, D. Structural and parametric identification of known memristors. Nanomaterials 2021, 12, 63. [Google Scholar] [CrossRef]
- Biolek, Z.; Biolek, D.; Biolkova, V. SPICE Model of Memristor with Nonlinear Dopant Drift. Radioengineering 2009, 18, 210–214. [Google Scholar]
- Gao, L.; Ren, Q.; Sun, J.; Han, S.T.; Zhou, Y. Memristor modeling: Challenges in theories, simulations, and device variability. J. Mater. Chem. C 2021, 9, 16859–16884. [Google Scholar] [CrossRef]
- Corinto, F.; Ascoli, A. A Boundary Condition-Based Approach to the Modeling of Memristor Nanostructures. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 2713–2726. [Google Scholar] [CrossRef]
- Ascoli, A.; Tetzlaff, R.; Biolek, Z.; Kolka, Z.; Biolkovà, V.; Biolek, D. The Art of Finding Accurate Memristor Model Solutions. IEEE J. Emerg. Sel. Top. Circuits Syst. 2015, 5, 133–142. [Google Scholar] [CrossRef]
- Biolek, D.; Biolek, Z. Fourth Fundamental Circuit Element: SPICE Modeling and Simulation. In Memristors and Memristive Systems; Tetzlaff, R., Ed.; Springer: New York, NY, USA, 2014; pp. 105–162. [Google Scholar] [CrossRef]
- Ouaja Rziga, F.; Mbarek, K.; Ghedira, S.; Besbes, K. The basic I–V characteristics of memristor model: Simulation and analysis. Appl. Phys. A Mater. Sci. Process. 2017, 123, 288. [Google Scholar] [CrossRef]
- Biolek, D.; Biolkova, V.; Kolka, Z. Modified MIM model of titanium dioxide memristor for reliable simulations in SPICE. In Proceedings of the 2017 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Taormina, Italy, 12–15 June 2017; IEEE: New York, NY, USA, 2017. [Google Scholar]
- Kalita, A.J.; Sharma, M.; Das, H.; Kalita, P.K. Memristive behaviour of Al/rGO-CdS/FTO device at different temperatures: A MATLAB-integrated study. Phys. E Low Dimens. Syst. Nanostruct. 2025, 165, 116107. [Google Scholar] [CrossRef]
Ref. | Bio-Material | Method | , | |
---|---|---|---|---|
[33] | Sweat ducts in the skin | Dry disc electrodes | 360 k, 417 k | 0.86 |
[34] | Leaf of aloe vera | Identical (Pt or Ag/AgCl) electrodes for measuring and as reference (Ref) | 218 k, 321 k | 0.67 |
[35] | Potato tubers | Teflon-coated platinum wires with a 0.076 mm diameter and AgCl electrodes for measurement and reference (Ref) in every experiment | 2042 k, 6060 k | 0.33 |
[36] | Pumpkin seeds | Platinum Electrode Based Measurement | 393 k, 419 k | 0.93 |
[37] | Protein blend | Liquid Sample Holder in a Potential Divider Arrangement | 0.4 k, 1.112 k | 0.35 |
[21] | Egg albumin | Deposition Using Spin Coating | 0.06 k, 99.2 k | 6 × |
[38] | BiFeO3 @egg albumen nanocomposite | Deposition Using Spin Coating | 0.073 k, 0.181 k | 4 × |
This work | Egg albumin | Drop-casting is used to deposit egg albumin into PLA substrate | 0.782 k, 2.899 k | 0.26 |
Joglekar Memristor Model Equation | Physical Quantities | Description |
---|---|---|
capacitance; rate of change of state variables; current | Initial condition of a capacitor representing internal capacitance. | |
voltage; initial state variable; initial condition | Initial condition for voltage, where is the initial state. | |
current source; constant; voltage across memristor; state variable; low resistance; high resistance; Joglekar window parameter | Equation defining , incorporating linear and nonlinear components of the memristor model. | |
current through memristor; voltage applied across terminals; state variable; low resistance; high resistance | Calculates based on parameters and variables related to , and constants. |
SPICE Parameter | SPICE Parameter Value | Parameter Description |
---|---|---|
2899 | Low-resistance state | |
782 | High-resistance state | |
k | 800 | Constant |
1 | Positive integer | |
0.906 | Initial state variable |
Year | Memristive Material | Memristor Model | Parameters | Simulation Platform | Ref. |
---|---|---|---|---|---|
2009 | TiO2 | Biolek | , , , , , | PSPICE | [40] |
2017 | TiO2 | Yakopcic | , , , , , , , , , , | PSPICE | [45] |
2017 | TiO2 | Pickett | , , , , , , , , , , , , , , | CADENCE 16.6 | [46] |
2024 | rGO-CdS nanocomposites | Thang Hoang | , , , MEF = 1.76 | MATLAB | [47] |
2024 | Egg albumin | Joglekar | , , , , | LTSPICE 24.1.3 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhury, H.; Gogoi, P.K.; Knaap, R.v.d.; Goswami, R.; Vanhamel, J. Development of a SPICE Model for Fabricated PLA/Al/Egg Albumin/Al Memristors Using Joglekar’s Approach. Electronics 2025, 14, 838. https://doi.org/10.3390/electronics14050838
Choudhury H, Gogoi PK, Knaap Rvd, Goswami R, Vanhamel J. Development of a SPICE Model for Fabricated PLA/Al/Egg Albumin/Al Memristors Using Joglekar’s Approach. Electronics. 2025; 14(5):838. https://doi.org/10.3390/electronics14050838
Chicago/Turabian StyleChoudhury, Hirakjyoti, Pallab Kr Gogoi, Ramon van der Knaap, Rupam Goswami, and Jurgen Vanhamel. 2025. "Development of a SPICE Model for Fabricated PLA/Al/Egg Albumin/Al Memristors Using Joglekar’s Approach" Electronics 14, no. 5: 838. https://doi.org/10.3390/electronics14050838
APA StyleChoudhury, H., Gogoi, P. K., Knaap, R. v. d., Goswami, R., & Vanhamel, J. (2025). Development of a SPICE Model for Fabricated PLA/Al/Egg Albumin/Al Memristors Using Joglekar’s Approach. Electronics, 14(5), 838. https://doi.org/10.3390/electronics14050838