A Recent Survey on Radio Map Estimation Methods for Wireless Networks
Abstract
:1. Introduction
- Model-driven methods are based on specific signal propagation models, which model the radio map as a function of location and frequency. However, model-driven methods strongly rely on sophisticated domain knowledge in wireless communications.
- Data-driven methods leverage measurement data to predict signal strengths at unknown locations or frequencies, thereby constructing complete radio maps. The performance of data-driven methods is heavily determined by the quantity and quality of measurements or simulation data.
- Hybrid model data-driven methods integrate signal propagation models with data-driven methods, achieving high-accuracy radio maps even with a limited number of samples.
2. Model-Driven Methods
2.1. Parametric Methods
2.1.1. Electromagnetic Simulation Methods
- Ray Tracing Method [20]: Based on the principles of geometric optics and the uniform theory of diffraction, the ray tracing method calculates the electromagnetic field strength in a simulated scenario to derive the signal strength distribution (i.e., a radio map). Firstly, the ray tracing method establishes a simulation scenario, by completing the following steps, including defining the electromagnetic properties of the propagation medium, determining the scenario boundaries, modeling the geometric shapes and dielectric properties of objects, and setting the locations of transmitters and receivers. Subsequently, considering the orientation and emission waveform of the transmitter, a set of rays is initialized from the transmitter. Figure 3 illustrates the ray paths from a single transmitter to a single receiver in a three-dimensional (3D) scenario. Specifically, the emitted rays follow the principles of geometric optics and, upon interacting with objects in the scenario, may generate multiple reflection, scattering, diffraction, and transmission phenomena of electromagnetic waves (Figure 4), before reaching the receiver. At each point of interaction with an object, parameters such as reflection coefficients of the rays are calculated based on the object’s dielectric properties, which determine the energy attenuation of the rays. Finally, by tracing the paths of all rays, the signal strength distribution in the propagation space is obtained. When the simulation scenario is modeled with sufficient precision and accuracy, the ray tracing method can generate radio maps that closely match real-world measurements.
- Geometry Based Stochastic Model (GBSM) [21]: GBSM describes the propagation environment by defining the distribution function of obstacles (also termed as scatterers). Based on the statistical distribution of channel parameters and geometric stochastic scattering theory, GBSM calculates the attenuation of rays between scatterers to obtain the path loss between any two points. Specifically, the construction of the GBSM includes the following steps: Firstly, channel measurements are conducted in typical scenarios to analyze the spatial distributions of scatterers and extract the statistical distributions of channel parameters, including delay spread, delay values, angular spread, shadow fading, and cross-polarization ratio, among others. Subsequently, for a specific target scenario, the propagation environment is described by setting the shape of the scattering area or the distribution function of scatterers. Finally, based on the geometric stochastic scattering theory and the statistical distribution of channel parameters, the spatio-temporal correlation functions of channels between transmitters and receivers (such as path loss and received signal strength (RSS)) are calculated. Similar to the ray tracing method, GBSM obtains channel characteristics by calculating the propagation rays between transmitters and receivers, and is thus often referred to as “statistical ray tracing”. However, unlike the ray tracing method, GBSM only requires calculating rays between scatterers, making it more versatile and of moderate complexity. The model parameters can be easily adjusted to simulate various radio frequency environments.The quasi-deterministic radio channel generator (QuaDRiGa) [22], based on GBSM, is a professional radio frequency simulation platform recommended by 3GPP as the preferred 5G simulation platform. QuaDRiGa is suitable for channel simulation in the frequency range of 2 GHz to 26 GHz and includes six classic models (such as 3GPP 3D, 3GPP 38.901, and WINNER) which can simulate 25 representative scenarios. However, since GBSM does not account for propagation mechanisms such as reflection, scattering, and diffraction, the simulation accuracy of QuaDRiGa is lower than that of the ray tracing method.
2.1.2. Path Loss Prediction Methods
2.1.3. Dominant Path Prediction Methods
- Step 1: Search for Candidate Dominant Paths
- Step 2: Path Loss Prediction for Different Candidate Dominant Paths
- Step 3: Determination of the Dominant Path
- Summary
2.2. Non-Parametric Methods
- Summary
3. Data-Driven Methods
3.1. Interpolation Methods
3.1.1. Linear Interpolation Methods
3.1.2. Nonlinear Interpolation Methods
- Summary
3.2. Deep Learning Methods
3.2.1. FNN-Based RME Methods
3.2.2. CNN-Based RME Methods
- Traditional CNN-based RME Methods
- FCN-based RME Methods
- CGAN-based RME Methods
3.2.3. ViT-Based RME Methods
4. Hybrid Model Data-Driven Methods
5. Public Datasets for Radio Maps
Datasets | Scenario | Data Source | Data Format | Data Volume | Frequency | Number of Tx | Antenna Form | Map Type |
---|---|---|---|---|---|---|---|---|
RadioMapSeer [62,102] https://dx.doi.org/10.21227/0gtx-6v30 | Urban | Ray tracing | Path loss/ToA map | 56,080 | Multiple | Single | Isotropic | 2D/3D |
Urban REMs [80] https://zenodo.org/records/7839447 | Urban | Ray tracing | RSS/coverage map | 5400 | Multiple | Multiple | Isotropic | 3D |
RSRPSet_urban [84] https://dx.doi.org/10.21227/vmw5-c226 | Urban | Measurements | RSRP map | 181 | Multiple | Single | Isotropic | 3D |
Indoor Radio Map Dataset [108] https://dx.doi.org/10.21227/c0ec-cw74 | Indoor | Ray tracing | Path loss map | 32,750 | Multiple | Single | Directional | 2D |
High-Resolution REM [110] https://dx.doi.org/10.21227/waxd-9525 | Office corridor | Measurements | Measurement values | 5000 | Single | Single | Isotropic | 2D |
AI4MOBILE [111] https://dx.doi.org/10.21227/04ta-v128 | Industrial scenario | Measurements | Measurement values | 50 GB | Single | Single | Isotropic | 2D |
Rosslyn dataset [58] https://github.com/fachu000/deep-autoencoders-cartography | Urban | Ray tracing | Path loss map | 125,000 | Single | Single | Isotropic | 2D |
PMNet dataset [69] https://github.com/abman23/PMNet | Urban | Ray tracing | Path loss map | 20,913 | Multiple | Single | Isotropic | 2D |
BART-Lab [101] https://github.com/BRATLab-UCD/Radiomap-Data | Urban | Ray tracing | RSS map | 21,000 | Multiple | Multiple | Isotropic | 2D |
RMDirectional Berlin [113] https://zenodo.org/records/10210089 | Urban | Ray tracing | Path loss map | 74,515 | Single | Single | Directional | 3D |
CKMImageNet [114] https://github.com/Darwen9/CKMImagenet | Various scenarios | Ray tracing | Path loss/ AoA/AoD map | 40,000 | Single | Multiple | Isotropic | 2D |
SpectrumNet [115] https://github.com/ShuhangZhang/FDRadiomap | Various scenarios | Ray tracing | 3D Path loss map | 300,000 | Multiple | Multiple | Isotropic | 3D |
3DiRM3200 [116] https://github.com/lighttime2023/3DiRM3200 | Indoor | Ray tracing | 3D Path loss map | 3200 | Single | Single | Isotropic | 3D |
6. Future Research Directions
6.1. Cross-Scenario RME Methods
6.2. RME Methods for Industrial RF Environments
6.3. Dynamic RME Methods
6.4. Emerging Deep Learning Methods for RME
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bi, S.; Lyu, J.; Ding, Z.; Zhang, R. Engineering Radio Maps for Wireless Resource Management. IEEE Wirel. Commun. 2019, 26, 133–141. [Google Scholar] [CrossRef]
- Pesko, M.; Javornik, T.; Kosir, A.; Stular, M.; Mohorcic, M. Radio Environment Maps: The Survey of Construction Methods. KSII Trans. Internet Inf. Syst. 2014, 8, 3789–3809. [Google Scholar] [CrossRef]
- Romero, D.; Kim, S.J. Radio Map Estimation: A data-driven approach to spectrum cartography. IEEE Signal Process. Mag. 2022, 39, 53–72. [Google Scholar] [CrossRef]
- Nikitaki, S.; Tsagkatakis, G.; Tsakalides, P. Efficient training for fingerprint based positioning using matrix completion. In Proceedings of the 20th European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 27–31 August 2012; pp. 195–199. [Google Scholar]
- Yapar, Ç.; Levie, R.; Kutyniok, G.; Caire, G. LocUNet: Fast Urban Positioning Using Radio Maps and Deep Learning. In Proceedings of the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 4063–4067. [Google Scholar] [CrossRef]
- Yapar, Ç.; Levie, R.; Kutyniok, G.; Caire, G. Real-Time Outdoor Localization Using Radio Maps: A Deep Learning Approach. IEEE Trans. Wirel. Commun. 2023, 22, 9703–9717. [Google Scholar] [CrossRef]
- Jung, S.H.; Moon, B.-C.; Han, D. Performance Evaluation of Radio Map Construction Methods for Wi-Fi Positioning Systems. IEEE Trans. Intell. Transp. Syst. 2017, 18, 880–889. [Google Scholar] [CrossRef]
- Alhmiedat, T. Fingerprint-Based Localization Approach for WSN Using Machine Learning Models. Appl. Sci. 2023, 13, 3037. [Google Scholar] [CrossRef]
- Utkovski, Z.; Agostini, P.; Frey, M.; Bjelakovic, I.; Stanczak, S. Learning Radio Maps for Physical-Layer Security in the Radio Access. In Proceedings of the IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Cannes, France, 2–5 July 2019; pp. 1–5. [Google Scholar]
- Van Chien, T.; Nguyen Canh, T.; Björnson, E.; Larsson, E.G. Power Control in Cellular Massive MIMO with Varying User Activity: A Deep Learning Solution. IEEE Trans. Wirel. Commun. 2020, 19, 5732–5748. [Google Scholar] [CrossRef]
- Park, S.; Truong, A.Q.; Nguyen, T.H. Power Control for Sum Spectral Efficiency Optimization in MIMO-NOMA Systems with Linear Beamforming. IEEE Access 2019, 7, 10593–10605. [Google Scholar] [CrossRef]
- Ashikhmin, A.; Marzetta, T. Pilot contamination precoding in multi-cell large scale antenna systems. In Proceedings of the 2012 IEEE International Symposium on Information Theory Proceedings, Cambridge, MA, USA, 1–6 July 2012; pp. 1137–1141. [Google Scholar]
- Nayak, B.P.; Hota, L.; Kumar, A.; Turuk, A.K.; Chong, P.H.J. Autonomous Vehicles: Resource Allocation, Security, and Data Privacy. IEEE Trans. Green Commun. Netw. 2022, 6, 117–131. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, R. Radio Map-Based 3D Path Planning for Cellular-Connected UAV. IEEE Trans. Wirel. Commun. 2021, 20, 1975–1989. [Google Scholar] [CrossRef]
- Mu, X.; Liu, Y.; Guo, L.; Lin, J.; Schober, R. Intelligent Reflecting Surface Enhanced Indoor Robot Path Planning: A Radio Map-Based Approach. IEEE Trans. Wirel. Commun. 2021, 20, 4732–4747. [Google Scholar] [CrossRef]
- Liao, Q.; Marchenko, N.; Hu, T.; Kulics, P.; Ewe, L. HARU: Haptic Augmented Reality-Assisted User-Centric Industrial Network Planning. In Proceedings of the 2022 IEEE Globecom Workshops (GC Wkshps), Rio de Janeiro, Brazil, 4–8 December 2022; pp. 389–394. [Google Scholar]
- Bethanabhotla, D.; Bursalioglu, O.Y.; Papadopoulos, H.C.; Caire, G. Optimal User-Cell Association for Massive MIMO Wireless Networks. IEEE Trans. Wirel. Commun. 2016, 15, 1835–1850. [Google Scholar] [CrossRef]
- Chen, Z.; Sohrabi, F.; Yu, W. Sparse Activity Detection for Massive Connectivity. IEEE Trans. Signal Process. 2018, 66, 1890–1904. [Google Scholar] [CrossRef]
- Riaz, M.S.; Qureshi, H.N.; Masood, U.; Rizwan, A.; Abu-Dayya, A.; Imran, A. Deep Learning-based Framework for Multi-Fault Diagnosis in Self-Healing Cellular Networks. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 10–13 April 2022; pp. 746–751. [Google Scholar]
- Yun, Z.; Iskander, M.F. Ray Tracing for Radio Propagation Modeling: Principles and Applications. IEEE Access 2015, 3, 1089–1100. [Google Scholar] [CrossRef]
- Bian, J.; Wang, C.X.; Gao, X.; You, X.; Zhang, M. A General 3D Non-Stationary Wireless Channel Model for 5G and Beyond. IEEE Trans. Wirel. Commun. 2021, 20, 3211–3224. [Google Scholar] [CrossRef]
- Jaeckel, S.; Raschkowski, L.; Börner, K.; Thiele, L. QuaDRiGa: A 3-D Multi-Cell Channel Model with Time Evolution for Enabling Virtual Field Trials. IEEE Trans. Antennas Propag. 2014, 62, 3242–3256. [Google Scholar] [CrossRef]
- Sarkar, T.K.; Zhong, J.; Kim, K.; Medouri, A.; Salazar-Palma, M. A survey of various propagation models for mobile communication. IEEE Antennas Propag. Mag. 2003, 45, 51–82. [Google Scholar] [CrossRef]
- Lee, M.; Han, D. Voronoi Tessellation Based Interpolation Method for Wi-Fi Radio Map Construction. IEEE Commun. Lett. 2012, 16, 404–407. [Google Scholar] [CrossRef]
- Hata, M. Empirical formula for propagation loss in land mobile radio services. IEEE Trans. Veh. Technol. 1980, 29, 317–325. [Google Scholar] [CrossRef]
- Mogensen, P.; Wigard, J. COST Action 231: Digital Mobile Radio Towards Future Generation System, Final Report; European Commission: Brussels, Belgium, 1999. [Google Scholar]
- 3GPP TR 38.901 Version 18.0.0 Release 18. Study on Channel Model for Frequencies from 0.5 to 100 GHz; 3GPP: Valbonne, France, 2024.
- ITU-RM.2412-0. Guidelines for Evaluation of Radio Interface Technologies for IMT-2020. October 2017. Available online: https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2412-2017-PDF-E.pdf (accessed on 9 April 2025).
- Wahl, R.; Wölfle, G.; Wertz, P.; Landstorfer, F. Dominant Path Prediction Model for Urban Scenarios. In Proceedings of the 14th IST Mobile and Wireless Communications Summit, Dresden, Germany, 19–23 June 2005. [Google Scholar]
- Wölfle, G.; Wahl, R.; Wertz, P.; Landstorfer, F. Dominant Path Prediction Model for Indoor Scenarios. In Proceedings of the German Microwave Conference (GeMiC), Ulm, Germany, 5–7 April 2005. [Google Scholar]
- Bazerque, J.A.; Mateos, G.; Giannakis, G.B. Group-Lasso on Splines for Spectrum Cartography. IEEE Trans. Signal Process. 2011, 59, 4648–4663. [Google Scholar] [CrossRef]
- Schölkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Bazerque, J.A.; Giannakis, G.B. Nonparametric Basis Pursuit via Sparse Kernel-Based Learning: A Unifying View with Advances in Blind Methods. IEEE Signal Process. Mag. 2013, 30, 112–125. [Google Scholar] [CrossRef]
- Gutierrez-Estevez, M.A.; Kasparick, M.; Stanczak, S. Online Learning of Any-to-Any Path Loss Maps. IEEE Commun. Lett. 2021, 25, 1573–1577. [Google Scholar] [CrossRef]
- Kasparick, M.; Cavalcante, R.L.G.; Valentin, S.; Stanczak, S.; Yukawa, M. Kernel-Based Adaptive Online Reconstruction of Coverage Maps with Side Information. IEEE Trans. Veh. Technol. 2016, 65, 5461–5473. [Google Scholar] [CrossRef]
- Kuo, S.-P.; Tseng, Y.-C. Discriminant Minimization Search for Large-Scale RF-Based Localization Systems. IEEE Trans. Mobile Comput. 2011, 10, 291–304. [Google Scholar] [CrossRef]
- Denkovski, D.; Atanasovski, V.; Gavrilovska, L.; Riihijaervi, J.; Maehoenen, P. Reliability of a Radio Environment Map: Case of Spatial Interpolation Techniques. In Proceedings of the 7th International Conference on Cognitive Radio Oriented Wireless Networks, Stockholm, Sweden, 18–20 June 2012; pp. 248–253. [Google Scholar]
- Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Boccolini, G.; Hernandez-Penaloz, G.; Beferull-Lozano, B. Wireless sensor network for Spectrum Cartography based on Kriging interpolation. In Proceedings of the 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Sydney, Australia, 9–12 September 2012; pp. 1565–1570. [Google Scholar]
- Sato, K.; Suto, K.; Inage, K.; Adachi, K.; Fujii, T. Space-Frequency-Interpolated Radio Map. IEEE Trans. Veh. Technol. 2021, 70, 714–725. [Google Scholar] [CrossRef]
- El-Frikh, Z.; Voicu, A.M.; Shabani, S.; Simic, L.; Mahonen, P. Crowdsourced Indoor Wi-Fi REMs: Does the Spatial Interpolation Method Matter? In Proceedings of the 2018 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Seoul, Republic of Korea, 22–25 October 2018; pp. 1–10. [Google Scholar]
- Wang, X.; Wang, X.; Mao, S.; Zhang, J.; Periaswamy, S.C.G.; Patton, J. Indoor Radio Map Construction and Localization with Deep Gaussian Processes. IEEE Internet Things J. 2020, 7, 11238–11249. [Google Scholar] [CrossRef]
- Huang, D.-H.; Wu, S.-H.; Wu, W.-R.; Wang, P.-H. Cooperative Radio Source Positioning and Power Map Reconstruction: A Sparse Bayesian Learning Approach. IEEE Trans. Veh. Technol. 2015, 64, 2318–2332. [Google Scholar] [CrossRef]
- Khalfi, B.; Hamdaoui, B.; Guizani, M. AirMAP: Scalable Spectrum Occupancy Recovery Using Local Low-Rank Matrix approximation. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 206–212. [Google Scholar]
- Krumm, J.; Platt, J. Minimizing Calibration Effort for an Indoor 802.11 Device Location Measurement System; Microsoft Res. Rep. MSR-TR-2003-82; Microsoft: Redmond, WA, USA, 2003. [Google Scholar]
- Lazzaro, D.; Montefusco, L.B. Radial basis functions for the multivariate interpolation of large scattered data sets. J. Comput. Appl. Math. 2002, 140, 521–536. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Saito, K.; Jin, Y.; Kang, C.; Takada, J.; Leu, J.-S. Two-step path loss prediction by artificial neural network for wireless service area planning. IEICE ComEX 2019, 8, 611–616. [Google Scholar] [CrossRef]
- Parera, C.; Liao, Q.; Malanchini, I.; Tatino, C.; Redondi, A.E.C.; Cesana, M. Transfer Learning for Tilt-Dependent Radio Map Prediction. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 829–843. [Google Scholar] [CrossRef]
- Sato, K.; Inage, K.; Fujii, T. On the Performance of Neural Network Residual Kriging in Radio Environment Mapping. IEEE Access 2019, 7, 94557–94568. [Google Scholar] [CrossRef]
- Imai, T.; Kitao, K.; Inomata, M. Radio Propagation Prediction Model Using Convolutional Neural Networks by Deep Learning. In Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–5. [Google Scholar]
- Iwasaki, M.; Nishio, T.; Morikura, M.; Yamamoto, K. Transfer Learning-Based Received Power Prediction with Ray-tracing Simulation and Small Amount of Measurement Data. In Proceedings of the 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, BC, Canada, 18 November–16 December 2020; pp. 1–6. [Google Scholar]
- Li, K.; Chen, J.; Yu, B.; Shen, Z.; Li, C.; He, S. Supreme: Fine-grained Radio Map Reconstruction via Spatial-Temporal Fusion Network. In Proceedings of the 2020 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Sydney, NSW, Australia, 21–24 April 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–12. [Google Scholar]
- Li, K.; Li, C.; Yu, B.; Shen, Z.; Zhang, Q.; He, S.; Chen, J. Model and Transfer Spatial-Temporal Knowledge for Fine-Grained Radio Map Reconstruction. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 828–841. [Google Scholar] [CrossRef]
- Gupta, A.; Du, J.; Chizhik, D.; Valenzuela, R.A.; Sellathurai, M. Machine Learning-Based Urban Canyon Path Loss Prediction Using 28 GHz Manhattan Measurements. IEEE Trans. Antennas Propag. 2022, 70, 4096–4111. [Google Scholar] [CrossRef]
- Seretis, A.; Sarris, C.D. Toward Physics-Based Generalizable Convolutional Neural Network Models for Indoor Propagation. IEEE Trans. Antennas Propag. 2022, 70, 4112–4126. [Google Scholar] [CrossRef]
- Wang, C.; Ai, B.; He, R.; Yang, M.; Zhou, S.; Yu, L.; Zhang, Y.; Qiu, Z.; Zhong, Z.; Fan, J. Channel Path Loss Prediction Using Satellite Images: A Deep Learning Approach. IEEE Trans. Mach. Learn. Commun. Netw. 2024, 2, 1357–1368. [Google Scholar] [CrossRef]
- Teganya, Y.; Romero, D. Deep Completion Autoencoders for Radio Map Estimation. IEEE Trans. Wireless Commun. 2022, 21, 1710–1724. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Liu, L.; Tian, Z. FedRME: Federated Learning for Enhanced Distributed Radiomap Estimation. In Proceedings of the 2024 IEEE 100th Vehicular Technology Conference (VTC2024-Fall), Washington, DC, USA, 7–10 October 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Krijestorac, E.; Hanna, S.; Cabric, D. Spatial Signal Strength Prediction using 3D Maps and Deep Learning. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Levie, R.; Yapar, Ç.; Kutyniok, G.; Caire, G. RadioUNet: Fast Radio Map Estimation with Convolutional Neural Networks. IEEE Trans. Wirel. Commun. 2021, 20, 4001–4015. [Google Scholar] [CrossRef]
- Krijestorac, E.; Sallouha, H.; Sarkar, S.; Cabric, D. Agile Radio Map Prediction Using Deep Learning. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Sallouha, H.; Sarkar, S.; Krijestorac, E.; Cabric, D. REM-U-Net: Deep Learning Based Agile REM Prediction with Energy-Efficient Cell-Free Use Case. IEEE Open J. Signal Process. 2024, 5, 750–765. [Google Scholar] [CrossRef]
- Ratnam, V.V.; Chen, H.; Pawar, S.; Zhang, B.; Zhang, C.J.; Kim, Y.-J.; Lee, S.; Cho, M.; Yoon, S.-R. FadeNet: Deep Learning-Based mm-Wave Large-Scale Channel Fading Prediction and its Applications. IEEE Access 2021, 9, 3278–3290. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, C.; Wu, G.; Wu, Y.; Wu, Q.; Al-Dhahir, N. Accurate Spectrum Map Construction for Spectrum Management Through Intelligent Frequency-Spatial Reasoning. IEEE Trans. Commun. 2023, 71, 3932–3945. [Google Scholar] [CrossRef]
- Lee, J.-H.; Serbetci, O.G.; Selvam, D.P.; Molisch, A.F. PMNet: Robust Pathloss Map Prediction via Supervised Learning. In Proceedings of the GLOBECOM 2023—2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 4601–4606. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, J.; Lee, S.-H.; Molisch, A.F. PMNet: Large-Scale Channel Prediction System for ICASSP 2023 First Pathloss Radio Map Prediction Challenge. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Lee, J.-H.; Molisch, A.F. A Scalable and Generalizable Pathloss Map Prediction. IEEE Trans. Wirel. Commun. 2024, 23, 17793–17806. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Qiu, K.; Bakirtzis, S.; Song, H.; Zhang, J.; Wassell, I. Pseudo Ray-Tracing: Deep Learning Assisted Outdoor mm-Wave Path Loss Prediction. IEEE Wirel. Commun. Lett. 2022, 11, 1699–1702. [Google Scholar] [CrossRef]
- Qiu, K.; Bakirtzis, S.; Song, H.; Wassell, I.; Zhang, J. Deep Learning-Based Path Loss Prediction for Outdoor Wireless Communication Systems. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Liu, G.; Reda, F.A.; Shih, K.J.; Wang, T.-C.; Tao, A.; Catanzaro, B. Image Inpainting for Irregular Holes Using Partial Convolutions. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 85–100. [Google Scholar]
- Li, F.; Deng, Y.; Zhou, B.; Wu, Q. Partial Convolutional Based-Radio Map Reconstruction for Urban Environments with Inaccessible Areas. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 7585–7589. [Google Scholar] [CrossRef]
- Wang, S.; Hu, S.-Y.; Cheah, E.; Wang, X.; Wang, J.; Chen, L.; Baikpour, M.; Ozturk, A.; Li, Q.; Chou, S.-H.; et al. U-Net Using Stacked Dilated Convolutions for Medical Image Segmentation. arXiv 2020, arXiv:2004.03466. [Google Scholar] [CrossRef]
- Bakirtzis, S.; Chen, J.; Qiu, K.; Zhang, J.; Wassell, I. EM DeepRay: An Expedient, Generalizable, and Realistic Data-Driven Indoor Propagation Model. IEEE Trans. Antennas Propag. 2022, 70, 4140–4154. [Google Scholar] [CrossRef]
- Bakirtzis, S.; Qiu, K.; Chen, J.; Song, H.; Zhang, J.; Wassell, I. Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models. IEEE J. Multiscale Multiphys. Comput. Tech. 2025, 10, 58–68. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 8–13 December 2014; Volume 2, pp. 2672–2680. [Google Scholar]
- Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784. [Google Scholar] [CrossRef]
- Chaves-Villota, A.; Viteri-Mera, C.A. DeepREM: Deep-Learning-Based Radio Environment Map Estimation from Sparse Measurements. IEEE Access 2023, 11, 48697–48714. [Google Scholar] [CrossRef]
- Liu, C.H.; Chang, H.; Park, T. DA-cGAN: A Framework for Indoor Radio Design Using a Dimension-Aware Conditional Generative Adversarial Network. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 2089–2098. [Google Scholar]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976. [Google Scholar] [CrossRef]
- Cisse, C.T.; Baala, O.; Guillet, V.; Spies, F.; Caminada, A. IRGAN: cGAN-based Indoor Radio Map Prediction. In Proceedings of the 2023 IFIP Networking Conference (IFIP Networking), Barcelona, Spain, 12–15 June 2023; pp. 1–9. [Google Scholar]
- Zheng, Y.; Wang, J.; Li, X.; Li, J.; Liu, S. Cell-Level RSRP Estimation with the Image-to-Image Wireless Propagation Model Based on Measured Data. IEEE Trans. Cogn. Commun. Netw. 2023, 9, 1412–1423. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.M.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is All you Need. arXiv 2017, arXiv:1706.03762. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A Survey on Vision Transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 45, 87–110. [Google Scholar] [CrossRef]
- Tian, Y.; Yuan, S.; Chen, W.; Liu, N. Transformer based Radio Map Prediction Model for Dense Urban Environments. In Proceedings of the 2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Zhuhai, China, 1–4 December 2021; pp. 1–3. [Google Scholar]
- Hehn, T.M.; Orekondy, T.; Shental, O.; Behboodi, A.; Bucheli, J.; Doshi, A.; Namgoong, J.; Yoo, T.; Sampath, A.; Soriaga, J.B. Transformer-Based Neural Surrogate for Link-Level Path Loss Prediction from Variable-Sized Maps. In Proceedings of the GLOBECOM 2023—2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 4804–4809. [Google Scholar]
- Zheng, Y.; Liao, C.; Wang, J.; Liu, S. A Transformer-Based Network for Unifying Radio Map Estimation and Optimized Site Selection. In Proceedings of the 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW), Seoul, Republic of Korea, 14–19 April 2024; pp. 610–614. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Yang, F.; Yang, H.; Fu, J.; Lu, H.; Guo, B. Learning Texture Transformer Network for Image Super-Resolution. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 5790–5799. [Google Scholar]
- Zappone, A.; Di Renzo, M.; Debbah, M.; Lam, T.T.; Qian, X. Model-Aided Wireless Artificial Intelligence: Embedding Expert Knowledge in Deep Neural Networks for Wireless System Optimization. IEEE Veh. Technol. Mag. 2019, 14, 60–69. [Google Scholar] [CrossRef]
- Zhang, S.; Choi, B.; Ouyang, F.; Ding, Z. Physics-Inspired Machine Learning for Radiomap Estimation: Integration of Radio Propagation Models and Artificial Intelligence. IEEE Commun. Mag. 2024, 62, 155–161. [Google Scholar] [CrossRef]
- Zhou, D.; Kang, B.; Jin, X.; Yang, L.; Lian, X.; Jiang, Z.; Hou, Q.; Feng, J. DeepViT: Towards Deeper Vision Transformer. arXiv 2021, arXiv:2103.11886. [Google Scholar] [CrossRef]
- Yu, H.; She, C.; Yue, C.; Hou, Z.; Rogers, P.; Vucetic, B.; Li, Y. Distributed Split Learning for Map-Based Signal Strength Prediction Empowered by Deep Vision Transformer. IEEE Trans. Veh. Technol. 2024, 73, 2358–2373. [Google Scholar] [CrossRef]
- Thrane, J.; Zibar, D.; Christiansen, H.L. Model-Aided Deep Learning Method for Path Loss Prediction in Mobile Communication Systems at 2.6 GHz. IEEE Access 2020, 8, 7925–7936. [Google Scholar] [CrossRef]
- Suto, K.; Bannai, S.; Sato, K.; Inage, K.; Adachi, K.; Fujii, T. Image-Driven Spatial Interpolation With Deep Learning for Radio Map Construction. IEEE Wirel. Commun. Lett. 2021, 10, 1222–1226. [Google Scholar] [CrossRef]
- Zhang, S.; Wijesinghe, A.; Ding, Z. RME-GAN: A Learning Framework for Radio Map Estimation Based on Conditional Generative Adversarial Network. IEEE Internet Things J. 2023, 10, 18016–18027. [Google Scholar] [CrossRef]
- Shrestha, S.; Fu, X.; Hong, M. Deep Spectrum Cartography: Completing Radio Map Tensors Using Learned Neural Models. IEEE Trans. Signal Process. 2022, 70, 1170–1184. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.; Li, H.; Li, X.; Xu, L.; Xu, H.; Mei, H.; Zhu, G.; Qi, N.; Xiao, M. RadioGAT: A Joint Model-Based and Data-Driven Framework for Multi-Band Radiomap Reconstruction via Graph Attention Networks. IEEE Trans. Wireless Commun. 2024, 23, 17777–17792. [Google Scholar] [CrossRef]
- Yapar, Ç.; Levie, R.; Kutyniok, G.; Caire, G. Dataset of Pathloss and ToA Radio Maps with Localization Application. arXiv 2024, arXiv:2212.11777. [Google Scholar] [CrossRef]
- Yapar, Ç.; Levie, R.; Kutyniok, G.; Caire, G. Dataset of Pathloss and ToA Radio Maps with Localization Application. IEEE Dataport 2022. [Google Scholar] [CrossRef]
- Yapar, Ç.; Jaensch, F.; Levie, R.; Kutyniok, G.; Caire, G. The First Pathloss Radio Map Prediction Challenge. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Yapar, Ç.; Jaensch, F.; Levie, R.; Kutyniok, G.; Caire, G. Overview of the First Pathloss Radio Map Prediction Challenge. IEEE Open J. Signal Process. 2024, 5, 948–963. [Google Scholar] [CrossRef]
- Chaves-Villota, A.; Viteri-Mera, C.A. DeepREM: Deep-Learning-Based Radio Environment Map Estimation from Sparse Measurements. Zenodo 2022. [Google Scholar] [CrossRef]
- Zheng, Y. RSRPSet_urban: Radio map in dense urban. IEEE Dataport 2022. [Google Scholar] [CrossRef]
- Bakirtzis, S.; Yapar, Ç.; Qiu, K.; Wassell, I.; Zhang, J. Indoor Radio Map Dataset. IEEE Dataport 2024. [Google Scholar] [CrossRef]
- Bakirtzis, S.; Yapar, Ç.; Qiu, K.; Wassell, I.; Zhang, J. The First Indoor Pathloss Radio Map Prediction Challenge. In Proceedings of the ICASSP 2025—2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Hyderabad, India, 6–11 April 2025; pp. 1–2. [Google Scholar] [CrossRef]
- Burmeister, F.; Li, Z.; Bizon, I. High-Resolution Radio Environment Map Data Set for Indoor Office Environment. IEEE Dataport 2022. [Google Scholar] [CrossRef]
- Hernangómez, R.; Palaios, A.; Watermann, C.; Schäufele, D.; Geuer, P.; Ismayilov, R.; Parvini, M.; Krause, A.; Kasparick, M.; Neugebauer, T.; et al. Toward an AI-Enabled Connected Industry: AGV Communication and Sensor Measurement Datasets. IEEE Commun. Mag. 2024, 62, 90–95. [Google Scholar] [CrossRef]
- Hernangómez, R.; Palaios, A.; Watermann, C.; Schäufele, D.; Geuer, P.; Ismayilov, R.; Parvini, M.; Krause, A.; Kasparick, M.; Neugebauer, T.; et al. AI4Mobile Industrial Wireless Datasets: iV2V and iV2I+. IEEE Dataport 2022. [Google Scholar] [CrossRef]
- Jaensch, F.; Caire, G.; Demir, B. Radio Map Estimation–An Open Dataset with Directive Transmitter Antennas and Initial Experiments. arXiv 2024, arXiv:2402.00878. [Google Scholar] [CrossRef]
- Wu, D.; Wu, Z.; Qiu, Y.; Fu, S.; Zeng, Y. CKMImageNet: A Comprehensive Dataset to Enable Channel Knowledge Map Construction via Computer Vision. In Proceedings of the 2024 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Hangzhou, China, 7–9 August 2024; pp. 114–119. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, S.; Lin, W.; Fang, Z.; Liu, K.; Zhang, H.; Chen, K. Generative AI on SpectrumNet: An Open Benchmark of Multiband 3D Radio Maps. IEEE Trans. Cogn. Commun. Netw. 2024; Early Access. [Google Scholar] [CrossRef]
- Rao, H.; Wang, J. A 2D Deep Residual Learning Approach for 3D Indoor Radio Map Estimation. In Proceedings of the ICC 2024—IEEE International Conference on Communications (ICC), Denver, CO, USA, 9–13 June 2024; pp. 3797–3802. [Google Scholar]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Zarour, M.; Tayade, S.; Melnyk, S.; Schotten, H.D. Coverage Hole Elimination System in Industrial Environment. In Proceedings of the 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy, 20–23 June 2023; pp. 1–5. [Google Scholar]
- Katagiri, K.; Sato, K.; Inage, K.; Fujii, T. Dynamic Radio Map Using Statistical Hypothesis Testing. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 752–766. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Z.; Li, H.; Zha, Y.; Wang, H.; Shen, Z.; Jiang, H.; Wang, J. A Novel Radio Environment Map Construction Scheme for Three-Dimensional and Full-Band for Modern Internet of Things Applications. IEEE Internet Things J. 2024; Early Access. [Google Scholar] [CrossRef]
- von Rueden, L.; Mayer, S.; Beckh, K.; Georgiev, B.; Giesselbach, S.; Heese, R.; Kirsch, B.; Pfrommer, J.; Pick, A.; Ramamurthy, R.; et al. Informed Machine Learning–A Taxonomy and Survey of Integrating Prior Knowledge into Learning Systems. IEEE Trans. Knowl. Data Eng. 2023, 35, 614–633. [Google Scholar] [CrossRef]
Reference | Architecture | Scenario | Results | Input Data | Frequency | Number of Tx | Tx Parameters * | Terrain Map |
---|---|---|---|---|---|---|---|---|
[48] | FNN | Indoor cellular | Path loss map | Transmitter and receiver locations | Single | Single | Yes | No |
[49] | FNN | Outdoor cellular | Received power map | Physical distance and relative elevation and relative azimuth | Single | Single | Yes | No |
[50] | FNN | MANET | Path loss map | Measurements and locations | Single | Multiple | Yes | No |
Reference | Architecture | Scenario | Results | Input Data | Frequency | Number of Tx | Tx Parameters * | Terrain Map |
---|---|---|---|---|---|---|---|---|
[51] | Traditional CNN | Urban macro-cell | Per-link path loss | BS and MS distance map and building height map | Single | Single | Yes | 3D |
[52] | Traditional CNN | Outdoor WiFi | Per-link received power | BS and MS distance map and building map | Single | Single | Yes | 3D |
[53] | Traditional CNN | Outdoor WiFi | RSS map | Historical data and external factors | Multiple | Multiple | No | No |
[55] | Traditional CNN | Urban canyon | Per-link path loss | Path loss measurements and building and clutter features | Single | Multiple | Yes | 2D |
[56] | Traditional CNN | Indoor office | RSS map | Ray tracing-based features and geometry-based features | Multiple | Single | Yes | 2D |
[57] | Traditional CNN | Outdoor communications | Per-link path loss | Satellite map and distance map | Single | Single | Yes | 2D |
Reference | Architecture | Scenario | Results | Input Data | Frequency | Number of Tx | Tx Parameters * | Terrain Map |
---|---|---|---|---|---|---|---|---|
[58] | CAE | Outdoor cellular | PSD map | PSD measurements and locations | Multiple | Multiple | No | No |
[59] | CAE | Urban canyon | RSS map | Incomplete radio map and sensor locations and landscape map | Single | Single | No | 2D |
[61] | UNet | Urban cellular | Spatial signal strength distribution | 3D terrain map and sparse measurements | Single | Single | No | 3D |
[62] | UNet | Urban cellular | Path loss map | City map and transmitter location map and measurements map | Single | Single | Yes | 2D |
[64] | UNet | Urban cellular | Path loss map | 3D city map and transmitter location map and LoS map | Single | Single | Yes | 3D |
[65] | UNet | Urban 5G cellular | Path loss map | Terrain and building and vegetation height | Single | Single | No | 2D |
[66] | UNet | Cellular network | Received power map | Sparse measurements map | Multiple | Multiple | No | No |
[69] | UNet | Cellular network | Path loss map | Building map and transmitter location | Single | Single | Yes | 2D |
[71] | SegNet | Urban 5G cellular | Path loss map | City map and transmitter location map and distance heatmap | Single | Single | Yes | 2D |
[74] | PcNet | Urban cellular | RSS map | Non-uniformly distributed measurements | Single | Single | No | No |
[76] | UNet | Indoor LoRa | Received power map | Indoor layout map and transmitter location map and Frequency annotation map | Multiple | Single | Yes | 2D |
Reference | Architecture | Scenario | Results | Input Data | Frequency | Number of Tx | Tx Parameters * | Terrain Map |
---|---|---|---|---|---|---|---|---|
[80] | CGAN | Urban cellular | Received power and coverage map | Received power measurements and locations | Single | Multiple | No | No |
[81] | CGAN | Indoor WiFi | Received power map | Indoor floorplan and dimension-aware feature vectors and macro-cell power map | Multiple | Multiple | No | No |
[83] | CGAN | Indoor WiFi | Path loss map | Site floorplan and transmitter location map | Single | Single | Yes | 2D |
[84] | CGAN | Urban cellular | RSRP map | Environment map and RSRP measurement map | Multiple | Single | Yes | 3D |
Reference | Architecture | Scenario | Results | Input Data | Frequency | Number of Tx | Tx Parameters * | Terrain Map |
---|---|---|---|---|---|---|---|---|
[88] | ViT | Dense urban | Received power map | Transmitter location and tree and building map | Single | Single | Yes | 3D |
[89] | ViT | Urban cellular (mmWave) | Per-link path loss | Building map and distance | Single | Single | Yes | 2D |
[90] | ViT | Urban cellular | Path loss map | Building map and BS locations | Single | Single | Yes | 2D |
Reference | Architecture | Scenario | Results | Input Data | Frequency | Number of Tx | Tx Parameters * | Terrain Map |
---|---|---|---|---|---|---|---|---|
[96] | 3GPP UMa and DeepViT and LSTM | Urban cellular | Per-link received power | Trajectory information and satellite map and historical RSS | Single | Single | Yes | 2D |
[97] | 3GPP UMa and DNN | Urban cellular | Per-link received power | Satellite map and location information | Single | Single | Yes | 2D |
[98] | LDPL and UNet | Urban and suburban cellular | Received power map | Sparse measurement map | Single | Single | No | 2D |
[99] | LDPL and CGAN | Outdoor cellular | Path loss map | Measurements and locations and building map and transmitter location | Single | Single | Yes | 2D |
[100] | Radio map aggregation model and CAE | Outdoor communication | PSD map | Measurements and locations | Multiple | Multiple | No | No |
[101] | Signal propagation model and GAT | Outdoor cellular | RSS map | Measurements over different frequencies | Multiple | Multiple | No | 2D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, B.; Zheng, M.; Liang, W.; Zhang, L. A Recent Survey on Radio Map Estimation Methods for Wireless Networks. Electronics 2025, 14, 1564. https://doi.org/10.3390/electronics14081564
Feng B, Zheng M, Liang W, Zhang L. A Recent Survey on Radio Map Estimation Methods for Wireless Networks. Electronics. 2025; 14(8):1564. https://doi.org/10.3390/electronics14081564
Chicago/Turabian StyleFeng, Bin, Meng Zheng, Wei Liang, and Lei Zhang. 2025. "A Recent Survey on Radio Map Estimation Methods for Wireless Networks" Electronics 14, no. 8: 1564. https://doi.org/10.3390/electronics14081564
APA StyleFeng, B., Zheng, M., Liang, W., & Zhang, L. (2025). A Recent Survey on Radio Map Estimation Methods for Wireless Networks. Electronics, 14(8), 1564. https://doi.org/10.3390/electronics14081564