Efficient Multiple-Input–Multiple-Output Channel State Information Feedback: A Semantic-Knowledge-Base- Driven Approach
Abstract
:1. Introduction
1.1. Motivations
1.2. Related Works
1.3. Contributions
- We are the first to introduce an SKB into MIMO CSI feedback, leveraging a shared SKB between the transmitter and receiver to compress CSI into discrete codewords using vector quantization, transmitting only their indices and significantly reducing feedback overhead.
- We propose a systematic approach for analyzing feedback overheads in MIMO CSI systems, evaluating the impact of transmission mechanisms on communication efficiency in bandwidth-constrained scenarios.
- We conduct extensive experiments to validate the feasibility of SKBNet. Experimental results show that SKBNet outperforms many existing methods in reconstruction accuracy and feedback efficiency across various compression ratios. Additionally, we analyze the impact of SKB size on feedback bit-count (FBC), NMSE, and cosine similarity, revealing the relationship between codebook size and performance metrics.
2. System Model
3. The Proposed Method
3.1. Component Design
3.2. Training Procedure
4. Feedback Overhead Analysis
5. Experiments
5.1. Experimental Setup
- Channel model configuration: We used an outdoor rural scenario operating in the 300 MHz frequency band. The BS is positioned at the center of a square area with each side spanning 400 meters, simulating an outdoor scenario. UEs are randomly scattered across this area for each sample. The BS is equipped with a Uniform Linear Array comprising 32 antennas (), and the system is configured with 1024 subcarriers (). We generate the channel matrices using the default settings from COST2100 [30]. When transforming the channel matrix into the angle-delay domain, we retain the first 32 rows ().
- Training implementation: The dataset is partitioned into 100,000 training samples, 30,000 validation samples, and 20,000 test samples, ensuring that all test samples are distinct from the training and validation sets. The models are trained for 1000 epochs with a batch size of 200. The simulation platform is implemented using PyTorch (https://pytorch.org/, accessed on 29 March 2025) and executed on an NVIDIA RTX 4090 GPU.
- CSI feedback assumption: In all experiments, we assume that CSI feedback is successfully delivered through reliable transmission mechanisms commonly employed in modern communication systems, allowing us to isolate and evaluate the fundamental compression-reconstruction performance of the proposed method.
5.2. Performance Evaluation
5.2.1. Evaluation Metrics
- NMSE: NMSE quantifies the reconstruction accuracy by measuring the difference between the original angular-delay domain CSI matrix, , and its reconstructed counterpart, , defined as below. A lower NMSE indicates better reconstruction quality.
- Cosine similarity (): In addition to NMSE, we employ the cosine similarity defined in [19] to measure the alignment between the original and reconstructed channel matrices. The cosine similarity is computed as
- FBC: Recall that we have calculated the FBC of SKBNet in Section 4. Here, we would like to emphasize that the existing approaches directly transmit the compressed tensor for CSI feedback. Without loss of generality, we assume each tensor element is converted into 32 bits for transmission, as the data type of these elements is usually float32. Thus, for their FBC calculation,
5.2.2. Comparison with Existing Methods
5.2.3. Impact of Codebook Size
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Papadopoulos, H.; Wang, C.; Bursalioglu, O.; Hou, X.; Kishiyama, Y. Massive MIMO technologies and challenges towards 5G. IEICE Trans. Commun. 2016, 99, 602–621. [Google Scholar] [CrossRef]
- Rao, X.; Lau, V.K. Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems. IEEE Trans. Signal Process. 2014, 62, 3261–3271. [Google Scholar]
- Sim, M.S.; Park, J.; Chae, C.B.; Heath, R.W. Compressed channel feedback for correlated massive MIMO systems. J. Commun. Netw. 2016, 18, 95–104. [Google Scholar] [CrossRef]
- Lv, Z.; Li, Y. A channel state information feedback algorithm for massive MIMO systems. IEEE Commun. Lett. 2016, 20, 1461–1464. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, W.; Gao, H.; Niu, K.; Xu, X.; Qin, X.; Yuan, C.; Qin, Z.; Zhao, H.; Wei, J.; et al. Toward wisdom-evolutionary and primitive-concise 6G: A new paradigm of semantic communication networks. Engineering 2022, 8, 60–73. [Google Scholar] [CrossRef]
- Xie, H.; Qin, Z.; Li, G.Y.; Juang, B.H. Deep learning enabled semantic communication systems. IEEE Trans. Signal Process. 2021, 69, 2663–2675. [Google Scholar] [CrossRef]
- Xie, H.; Qin, Z. A lite distributed semantic communication system for Internet of Things. IEEE J. Sel. Areas Commun. 2020, 39, 142–153. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, R.; Zhao, Z.; Peng, C.; Zhang, H. Semantic communication with adaptive universal transformer. IEEE Wirel. Commun. Lett. 2021, 11, 453–457. [Google Scholar] [CrossRef]
- Bourtsoulatze, E.; Kurka, D.B.; Gündüz, D. Deep joint source-channel coding for wireless image transmission. IEEE Trans. Cogn. Commun. Netw. 2019, 5, 567–579. [Google Scholar] [CrossRef]
- Yang, M.; Kim, H.S. Deep joint source-channel coding for wireless image transmission with adaptive rate control. In Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 5193–5197. [Google Scholar]
- Dai, J.; Wang, S.; Tan, K.; Si, Z.; Qin, X.; Niu, K.; Zhang, P. Nonlinear transform source-channel coding for semantic communications. IEEE J. Sel. Areas Commun. 2022, 40, 2300–2316. [Google Scholar] [CrossRef]
- Tung, T.Y.; Gündüz, D. DeepWiVe: Deep-learning-aided wireless video transmission. IEEE J. Sel. Areas Commun. 2022, 40, 2570–2583. [Google Scholar] [CrossRef]
- Wang, S.; Dai, J.; Liang, Z.; Niu, K.; Si, Z.; Dong, C.; Qin, X.; Zhang, P. Wireless deep video semantic transmission. IEEE J. Sel. Areas Commun. 2022, 41, 214–229. [Google Scholar] [CrossRef]
- Xu, J.; Ai, B.; Wang, N.; Chen, W. Deep Joint Source-Channel Coding for CSI Feedback: An End-to-End Approach. IEEE J. Sel. Areas Commun. 2023, 41, 260–273. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, Y.; Qi, C.; Liu, Y. Multiple-beam selection with limited feedback for hybrid beamforming in massive MIMO systems. IEEE Access 2017, 5, 13327–13335. [Google Scholar] [CrossRef]
- Chang, Z.; Wang, Z.; Guo, X.; Han, Z.; Ristaniemi, T. Energy-efficient resource allocation for wireless powered massive MIMO system with imperfect CSI. IEEE Trans. Green Commun. Netw. 2017, 1, 121–130. [Google Scholar] [CrossRef]
- O’Shea, T.J.; Erpek, T.; Clancy, T.C. Deep learning based MIMO communications. arXiv 2017, arXiv:1707.07980. [Google Scholar]
- Liang, P.; Fan, J.; Shen, W.; Qin, Z.; Li, G.Y. Deep learning and compressive sensing-based CSI feedback in FDD massive MIMO systems. IEEE Trans. Veh. Technol. 2020, 69, 9217–9222. [Google Scholar] [CrossRef]
- Wen, C.K.; Shih, W.T.; Jin, S. Deep learning for massive MIMO CSI feedback. IEEE Wirel. Commun. Lett. 2018, 7, 748–751. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, J.; Song, J. Multi-resolution CSI feedback with deep learning in massive MIMO system. In Proceedings of the ICC 2020–2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Tolba, B.; Elsabrouty, M.; Abdu-Aguye, M.G.; Gacanin, H.; Kasem, H.M. Massive MIMO CSI feedback based on generative adversarial network. IEEE Commun. Lett. 2020, 24, 2805–2808. [Google Scholar] [CrossRef]
- Cao, B.; Yang, Y.; Ran, P.; He, D.; He, G. ACCsiNet: Asymmetric convolution-based autoencoder framework for massive MIMO CSI feedback. IEEE Commun. Lett. 2021, 25, 3873–3877. [Google Scholar] [CrossRef]
- Cui, Y.; Guo, A.; Song, C. TransNet: Full attention network for CSI feedback in FDD massive MIMO system. IEEE Wirel. Commun. Lett. 2022, 11, 903–907. [Google Scholar] [CrossRef]
- Van Den Oord, A.; Vinyals, O.; Kavukcuoglu, K. Neural discrete representation learning. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Rizzello, V.; Nerini, M.; Joham, M.; Clerckx, B.; Utschick, W. User-Driven Adaptive CSI Feedback With Ordered Vector Quantization. IEEE Wirel. Commun. Lett. 2023, 12, 1956–1960. [Google Scholar] [CrossRef]
- Shin, J.; Kang, Y.; Jeon, Y.S. Vector Quantization for Deep-Learning-Based CSI Feedback in Massive MIMO Systems. arXiv 2024, arXiv:2403.07355. [Google Scholar] [CrossRef]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Gao, M.; Liao, T.; Lu, Y. Fully connected feedforward neural networks based CSI feedback algorithm. China Commun. 2021, 18, 43–48. [Google Scholar] [CrossRef]
- Hu, Z.; Guo, J.; Liu, G.; Zheng, H.; Xue, J. MRFNet: A deep learning-based CSI feedback approach of massive MIMO systems. IEEE Commun. Lett. 2021, 25, 3310–3314. [Google Scholar] [CrossRef]
- Liu, L.; Oestges, C.; Poutanen, J.; Haneda, K.; Vainikainen, P.; Quitin, F.; Tufvesson, F.; De Doncker, P. The COST 2100 MIMO channel model. IEEE Wirel. Commun. 2012, 19, 92–99. [Google Scholar] [CrossRef]
- Zheng, C.; Vedaldi, A. Online clustered codebook. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 22798–22807. [Google Scholar]
- Takida, Y.; Shibuya, T.; Liao, W.; Lai, C.H.; Ohmura, J.; Uesaka, T.; Murata, N.; Takahashi, S.; Kumakura, T.; Mitsufuji, Y. Sq-vae: Variational bayes on discrete representation with self-annealed stochastic quantization. arXiv 2022, arXiv:2205.07547. [Google Scholar]
Compression Ratio | 1/16 | 1/64 | ||||
---|---|---|---|---|---|---|
Metrics | NMSE (dB) | FBC (bits) | NMSE (dB) | FBC (bits) | ||
CsiNet [19] | −4.51 | 0.790 | 4096 | −1.93 | 0.590 | 1024 |
CRNet [20] | −5.44 | 0.821 | 4096 | −2.22 | 0.593 | 1024 |
DCGAN [21] | −8.07 | - | 4096 | −4.01 | - | 1024 |
CF-FCFNN [28] | −9.12 | 0.920 | 4096 | −7.25 | 0.880 | 1024 |
MRFNet [29] | −9.49 | - | 4096 | −6.52 | - | 1024 |
ACCsiNet [22] | −11.76 | 0.944 | 4096 | −7.11 | 0.876 | 1024 |
TransNet [23] | −7.82 | - | 4096 | −2.62 | - | 1024 |
SKBNet | −12.45 | 0.969 | 704 | −10.69 | 0.954 | 176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, L.; Sun, Y.; Yao, S.; Xu, X.; Chen, H.; Luo, Z. Efficient Multiple-Input–Multiple-Output Channel State Information Feedback: A Semantic-Knowledge-Base- Driven Approach. Electronics 2025, 14, 1666. https://doi.org/10.3390/electronics14081666
Tang L, Sun Y, Yao S, Xu X, Chen H, Luo Z. Efficient Multiple-Input–Multiple-Output Channel State Information Feedback: A Semantic-Knowledge-Base- Driven Approach. Electronics. 2025; 14(8):1666. https://doi.org/10.3390/electronics14081666
Chicago/Turabian StyleTang, Ling, Yaping Sun, Shumin Yao, Xiaodong Xu, Hao Chen, and Zhiyong Luo. 2025. "Efficient Multiple-Input–Multiple-Output Channel State Information Feedback: A Semantic-Knowledge-Base- Driven Approach" Electronics 14, no. 8: 1666. https://doi.org/10.3390/electronics14081666
APA StyleTang, L., Sun, Y., Yao, S., Xu, X., Chen, H., & Luo, Z. (2025). Efficient Multiple-Input–Multiple-Output Channel State Information Feedback: A Semantic-Knowledge-Base- Driven Approach. Electronics, 14(8), 1666. https://doi.org/10.3390/electronics14081666