Research on Lithium-Ion Battery Diaphragm Defect Detection Based on Transfer Learning-Integrated Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Transfer Learning
2.2. Pre-Trained Model
2.3. Loss Functions
3. Results
3.1. Experimental Part
3.1.1. Experimental Equipment
3.1.2. Data Processing
3.2. Evaluation Indicators
4. Experimental Discussion and Analysis
4.1. Experimental Test Results
4.2. Analysis of Experimental Performance Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Faster R-CNN | Faster Region-based Convolutional Neural Network |
R-CNN | Region-based Convolutional Neural Network |
AdaDelta | Adaptive Delta |
F1 score | balanced F Score |
ROC | Receiver Operating Characteristic |
SIFT | Scale-invariant feature transform |
AUC | Area Under Curve |
CNN | Convolutional Neural Network |
SS | Selective Search |
TPR | True Positive Rate |
FPR | False Positive Rate |
RPN | Region Proposal Network |
YOLO | You Only Look Once |
SSD | Single Shot MultiBox Detector |
VGG16 | Visual Geometry Group 16-layer network |
ROI Pooling | Region of Interest Pooling |
FPN | Feature Pyramid Network |
ResNet | Residual Network |
NMS | Non-Maximum Suppression |
cuDNN | CUDA Deep Neural Network Library |
IoU | Intersection over Union |
TP | True Positive |
FP | False Positive |
TN | True Negative |
FN | False Negative |
References
- Shahjalal, M.; Roy, P.K.; Shams, T.; Fly, A.; Chowdhury, J.I.; Ahmed, R.; Liu, K. A review on second-life of Li-ion batteries: Prospects, challenges, and issues. Energy 2022, 241, 122881. [Google Scholar] [CrossRef]
- Ye, L.; Peng, D.; Xue, D.; Chen, S.; Shi, A. Co-estimation of lithium-ion battery state-of-charge and state-of-health based on fractional-order model. J. Energy Storage 2023, 65, 107225. [Google Scholar] [CrossRef]
- Ye, L.-H.; Chen, S.-J.; Shi, Y.-F.; Peng, D.-H.; Shi, A.-P. Remaining useful life prediction of lithium-ion battery based on chaotic particle swarm optimization and particle filter. Int. J. Electrochem. Sci. 2023, 18, 100122. [Google Scholar] [CrossRef]
- Hu, G.; Huang, P.; Bai, Z.; Wang, Q.; Qi, K. Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery. eTransportation 2021, 10, 100140. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, X.; Cao, B.; Yang, L.; Liew, K. Investigating the relationship between heating temperature and thermal runaway of prismatic lithium-ion battery with LiFePO4 as cathode. Energy 2022, 256, 124714. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, D.; Lu, R.; Liu, X.; Wan, D. C2DEM-YOLO: Improved YOLOv8 for defect detection of photovoltaic cell modules in electroluminescence image. Nondestruct. Test. Eval. 2025, 40, 309–331. [Google Scholar] [CrossRef]
- Zhao, C.; He, J.; Li, J.; Tong, J.; Xiong, J. (Eds.) Preparation and properties of UHMWPE microporous membrane for lithium ion battery diaphragm. IOP Conf. Ser. Mater. Sci. Eng. 2018, 324, 012089. [Google Scholar] [CrossRef]
- Zhou, H.; Ge, Z.; Hu, Y.; Luo, J.; Zeng, Y. (Eds.) An Improved Deep Learning Network Based Defect Detection Algorithm for Lithium-ion Battery Pole Chip. In Proceedings of the 2023 8th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), Chengdu, China, 26–28 April 2023; IEEE: New York, NY, USA, 2023. [Google Scholar]
- Schoo, A.; Moschner, R.; Hülsmann, J.; Kwade, A. Coating defects of lithium-ion battery electrodes and their inline detection and tracking. Batteries 2023, 9, 111. [Google Scholar] [CrossRef]
- Choi, S.; Liu, P.; Yi, K.; Sampath, S.; Sohn, H. Noncontact laser ultrasonic inspection of weld defect in lithium-ion battery cap. J. Energy Storage 2023, 73, 108838. [Google Scholar] [CrossRef]
- Pan, Y.; Kong, X.; Yuan, Y.; Sun, Y.; Han, X.; Yang, H.; Zhang, J.; Liu, X.; Gao, P.; Li, Y.; et al. Detecting the foreign matter defect in lithium-ion batteries based on battery pilot manufacturing line data analyses. Energy 2023, 262, 125502. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, H.; Lu, L.; Sun, Y.; Kong, X.; Han, X.; Ouyang, M. In situ detection method for Li-ion battery of separator pore closure defects based on abnormal voltage in rest condition. J. Power Sources 2022, 542, 231785. [Google Scholar] [CrossRef]
- Felzenszwalb, P.; McAllester, D.; Ramanan, D. A discriminatively trained, multiscale, deformable part model. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AL, USA, 23–28 June 2008; IEEE: New York, NY, USA, 2008. [Google Scholar]
- Jia, F.; Chen, C.-C. Emotional characteristics and time series analysis of Internet public opinion participants based on emotional feature words. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420904213. [Google Scholar] [CrossRef]
- Wang, C.; Han, D. Credit card fraud forecasting model based on clustering analysis and integrated support vector machine. Clust. Comput. 2019, 22 (Suppl. S6), 13861–13866. [Google Scholar] [CrossRef]
- Zhong, F.; Kumar, R.; Quan, C. A cost-effective single-shot structured light system for 3D shape measurement. IEEE Sens. J. 2019, 19, 7335–7346. [Google Scholar] [CrossRef]
- Jeon, Y.-J.; Choi, D.-C.; Lee, S.J.; Yun, J.P.; Kim, S.W. Defect detection for corner cracks in steel billets using a wavelet reconstruction method. JOSA A 2014, 31, 227–237. [Google Scholar] [CrossRef]
- Dupont, F.; Odet, C.; Cartont, M. Optimization of the recognition of defects in flat steel products with the cost matrices theory. NDT&E Int. 1997, 30, 3–10. [Google Scholar]
- Bustillo, A.; Pimenov, D.Y.; Matuszewski, M.; Mikolajczyk, T. Using artificial intelligence models for the prediction of surface wear based on surface isotropy levels. Robot. Comput.-Integr. Manuf. 2018, 53, 215–227. [Google Scholar] [CrossRef]
- Luo, Q.; He, Y. A cost-effective and automatic surface defect inspection system for hot-rolled flat steel. Robot. Comput.-Integr. Manuf. 2016, 38, 16–30. [Google Scholar] [CrossRef]
- Song, K.; Yan, Y. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl. Surf. Sci. 2013, 285, 858–864. [Google Scholar] [CrossRef]
- Ngo, V.-D.; Vuong, T.-C.; Van Luong, T.; Tran, H. Machine learning-based intrusion detection: Feature selection versus feature extraction. Cluster. Comput. 2024, 27, 2365–2379. [Google Scholar] [CrossRef]
- Weimer, D.; Scholz-Reiter, B.; Shpitalni, M. Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. CIRP Ann. 2016, 65, 417–420. [Google Scholar] [CrossRef]
- Kong, T.; Sun, F.; Yao, A.; Liu, H.; Lu, M.; Chen, Y. (Eds.) Ron: Reverse connection with objectness prior networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; IEEE: New York, NY, USA, 2017. [Google Scholar]
- Ren, R.; Hung, T.; Tan, K.C. A generic deep-learning-based approach for automated surface inspection. IEEE Trans. Cybern. 2017, 48, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Bu, C.; Shen, R.; Bai, W.; Chen, P.; Li, R.; Zhou, R.; Li, J.; Tang, Q. CNN-based defect detection and classification of PV cells by infrared thermography method. Nondestruct. Test. Eval. 2024, 40, 1752–1769. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.; Wan, Z. Surface defect detection of steel strips based on improved YOLOv4. Comput. Electr. Eng. 2022, 102, 108208. [Google Scholar] [CrossRef]
- Dong, H.; Yang, L.; Li, H. Small fault diagnosis of front-end speed controlled wind generator based on deep learning. WSEAS Trans. Circuits Syst. 2016, 15, 64. [Google Scholar]
- Zeng, N.; Wu, P.; Wang, Z.; Li, H.; Liu, W.; Liu, X. A small-sized object detection oriented multi-scale feature fusion approach with application to defect detection. IEEE Trans. Instrum. Meas. 2022, 71, 1–14. [Google Scholar] [CrossRef]
- Wan, X.; Zhang, X.; Liu, L. An improved VGG19 transfer learning strip steel surface defect recognition deep neural network based on few samples and imbalanced datasets. Appl. Sci. 2021, 11, 2606. [Google Scholar] [CrossRef]
- Wang, H.; Li, M.; Wan, Z. Rail surface defect detection based on improved Mask R-CNN. Comput. Electr. Eng. 2022, 102, 108269. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 142–158. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Wahab, M.A. Damage detection in slab structures based on two-dimensional curvature mode shape method and Faster R-CNN. Adv. Eng. Softw. 2023, 176, 103371. [Google Scholar] [CrossRef]
- Uijlings, J.R.; Van De Sande, K.E.; Gevers, T.; Smeulders, A.W.M. Selective search for object recognition. Int. J. Comput. Vis. 2013, 104, 154–171. [Google Scholar] [CrossRef]
- Girshick, R. (Ed.) Fast R-CNN. computer science. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Washington, DC, USA, 11–18 December 2015; IEEE: New York, NY, USA, 2015. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fan, X.; Zhao, Z.; Qiao, Z.; Wang, N.; Qiu, Y.; Jia, X. Research on steel surface defect detection system based on YOLOv5s-SE-CA model and BEMD image enhancement. Nondestruct. Test. Eval. 2024, 1–20. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. (Eds.) Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Arora, S.; Rani, R.; Saxena, N. SETL: A transfer learning based dynamic ensemble classifier for concept drift detection in streaming data. Clust. Comput. 2024, 27, 3417–3432. [Google Scholar] [CrossRef]
Subsystems | Hardware Composition | Corresponds |
---|---|---|
Transmission system | Winders, rollers | Moves the diaphragm through the detection zone |
Lighting system | Linear Light Source, Light Source Controller | Provides stable, brightness-adjustable linear lighting |
Sensing system | Line array cameras, lenses | Linear scanning of the diaphragm to capture image data |
Central control system | Industrial Controls, Image Capture Cards | Controls other subsystems and processes image data at high speed |
Parameters | Value | Recall (%) | Precision (%) | F1 (%) | Average Detection Time (s/Picture) | Running Memory (GB) |
---|---|---|---|---|---|---|
Learning Rate | 0.05 | 97.38 | 97.64 | 97.51 | 0.24 | 12.4 |
0.15 | 99.61 | 98.29 | 98.95 | 0.24 | 12.2 | |
0.5 | 97.26 | 99.37 | 98.30 | 0.25 | 12.9 | |
Batch size | 4 | 99.61 | 98.29 | 98.95 | 0.24 | 12.2 |
8 | 98.09 | 97.88 | 97.97 | 0.43 | 13.6 | |
16 | 98.08 | 98.70 | 98.39 | 1.04 | 16.9 | |
Regularization Factor | 5 × 10−6 | 98.93 | 99.03 | 98.97 | 0.24 | 12.5 |
1.5 × 10−6 | 99.61 | 98.29 | 98.95 | 0.25 | 12.2 | |
2 × 10−5 | 99.02 | 98.03 | 98.52 | 0.33 | 11.9 | |
NMS Threshold | 0.3 | 99.61 | 98.29 | 98.95 | 0.24 | 12.2 |
0.5 | 98.42 | 99.55 | 98.98 | 0.25 | 11.7 | |
0.7 | 95.68 | 97.50 | 96.58 | 0.29 | 12.5 |
Parameters | Recall (%) | Precision (%) | F1 (%) | Average Detection Time (s/Picture) | Running Memory (GB) |
---|---|---|---|---|---|
Fast-RCNN | 57.81 | 92.27 | 71.08 | 0.56 | 10.7 |
Faster-RCNN | 97.65 | 97.47 | 97.39 | 0.19 | 11.4 |
RetinaNet | 97.56 | 98.40 | 97.98 | 0.20 | 11.8 |
Faster-RCNN and RetinaNet Integration | 99.61 | 98.29 | 98.95 | 0.24 | 12.2 |
Parameters | Recall (%) | Precision (%) | F1 (%) | Average Detection Time (s/Picture) | Running Memory (GB) |
---|---|---|---|---|---|
Freeze backbone network | 99.61 | 98.29 | 98.95 | 0.24 | 12.2 |
Unfreeze backbone network | 96.23 | 94.79 | 95.50 | 0.25 | 15.5 |
Use dropout | 99.61 | 98.29 | 98.95 | 0.24 | 12.2 |
Non-use dropout | 97.64 | 95.56 | 96.59 | 0.24 | 15.1 |
Replacement of classification and regression layers | 99.61 | 98.29 | 98.95 | 0.24 | 12.2 |
No replacement of classification and regression layers | 73.76 | 82.56 | 77.91 | 0.24 | 12.1 |
Use pre-trained weights | 99.61 | 98.29 | 98.95 | 0.24 | 12.2 |
Non-use pre-trained weights | 94.86 | 93.28 | 94.06 | 0.25 | 14.5 |
Method | Recall (%) | Precision (%) | F1 (%) | Average Detection Time (s/Picture) | Running Memory (GB) |
---|---|---|---|---|---|
Source Dataset | 83.35 | 91.24 | 87.12 | 0.21 | 11.6 |
Data Enhancement + Weighted-RandomSampler + Stratified K-Fold | 99.61 | 98.29 | 98.95 | 0.24 | 12.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, L.; Zhao, X.; He, Z.; Zhang, Z.; Zhao, Q.; Shi, A. Research on Lithium-Ion Battery Diaphragm Defect Detection Based on Transfer Learning-Integrated Modeling. Electronics 2025, 14, 1699. https://doi.org/10.3390/electronics14091699
Ye L, Zhao X, He Z, Zhang Z, Zhao Q, Shi A. Research on Lithium-Ion Battery Diaphragm Defect Detection Based on Transfer Learning-Integrated Modeling. Electronics. 2025; 14(9):1699. https://doi.org/10.3390/electronics14091699
Chicago/Turabian StyleYe, Lihua, Xu Zhao, Zhou He, Zixing Zhang, Qinglong Zhao, and Aiping Shi. 2025. "Research on Lithium-Ion Battery Diaphragm Defect Detection Based on Transfer Learning-Integrated Modeling" Electronics 14, no. 9: 1699. https://doi.org/10.3390/electronics14091699
APA StyleYe, L., Zhao, X., He, Z., Zhang, Z., Zhao, Q., & Shi, A. (2025). Research on Lithium-Ion Battery Diaphragm Defect Detection Based on Transfer Learning-Integrated Modeling. Electronics, 14(9), 1699. https://doi.org/10.3390/electronics14091699