Multi-Path Convolutional Architecture with Channel-Wise Attention for Multiclass Brain Tumor Detection in Magnetic Resonance Imaging Scans
Abstract
:1. Introduction
- We design a feature extraction strategy with multi-path CNN blocks that capture nuanced tumor morphologies, while channel-wise attention mechanisms refine salient characteristics across different feature scales.
- We implement systematic data augmentation techniques, transforming an initially imbalanced dataset into a uniformly distributed collection of 6380 MRI scans that enhances model generalization across varied patient demographics.
- We integrate a DenseNet-inspired dense connectivity block that promotes feature reuse and improves gradient flow, enabling the deeper layers to retain and refine information gathered by shallower layers.
- We compare our proposed approach with established CNN architectures such as VGG16, VGG19, MobileNetv2, and ResNet50, demonstrating superior performance metrics, including accuracy, precision, recall, and mean average precision (mAP).
- We report an inference time of 5.13 ms per scan and a competitive diagnostic accuracy nearing 97.52%. This balance between speed and performance supports the model’s potential integration into real-time clinical workflows, offering a non-invasive complement to traditional diagnostic techniques.
2. Related Work
3. Methodology
3.1. Overview
3.2. Dataset Collection and Pre-Processing
- Resizing to 224 × 224 pixels to ensure uniform input dimensions;
- Intensity normalization to the range [0, 1];
- Data augmentation through random rotations (±15 degrees), horizontal and vertical flipping, brightness adjustments (±10%), and Gaussian noise injection ().
3.3. Proposed Methodology
- (1)
- Multi-path CNN Block
- (2)
- Attention Block
- (3)
- Multi-path CNN with DenseNet Block
- (4)
- Classification Layer
3.4. Loss Function and Optimization Strategy
3.5. Experimental Setup
3.6. Evaluation Metrics
4. Results
4.1. Comparison with Baseline Methods
4.2. Comparison with State-of-the-Art Methods
4.3. Cross-Validation Evaluation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gore, D.V.; Deshpande, V. Comparative Study of Various Techniques Using Deep Learning for Brain Tumor Detection. In Proceedings of the 2020 International Conference for Emerging Technology (INCET 2020), Belgaum, India, 5–7 June 2020; pp. 1–4. [Google Scholar]
- Gliomas and its Symptoms and Causes; Johns Hopkins Medicine: Baltimore, MD, USA, 2022.
- Pituitary Tumors—Symptoms and Causes; Mayo Clinic: Rochester, MN, USA, 2022.
- Meningioma, Risk its Symptoms; Johns Hopkins Medicine: Baltimore, MD, USA, 2022.
- Rasheed, Z.; Ma, Y.K.; Ullah, I.; Ghadi, Y.Y.; Khan, M.Z.; Khan, M.A.; Abdusalomov, A.; Alqahtani, F.; Shehata, A.M. Brain tumor classification from MRI using image enhancement and convolutional neural network techniques. Brain Sci. 2023, 13, 1320. [Google Scholar] [CrossRef] [PubMed]
- McFaline-Figueroa, J.R.; Lee, E.Q. Brain tumors. Am. J. Med. 2018, 131, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Payne, L.S.; Huang, P.H. The pathobiology of collagens in glioma. Mol. Cancer Res. 2013, 11, 1129–1140. [Google Scholar] [CrossRef]
- Wen, P.Y.; Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 2008, 359, 492–507. [Google Scholar] [CrossRef]
- Gupta, A.; Dwivedi, T. A simplified overview of World Health Organization classification update of central nervous system tumors 2016. J. Neurosci. Rural Pract. 2017, 8, 629–641. [Google Scholar] [CrossRef]
- Melmed, S. Pathogenesis of pituitary tumors. Nat. Rev. Endocrinol. 2011, 7, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.; Barani, I.; Chamberlain, M.; Kaley, T.J.; McDermott, M.; Raizer, J.; Schiff, D.; Weber, D.C.; Wen, P.Y.; Vogelbaum, M.A. Meningiomas: Knowledge base, treatment outcomes, and uncertainties. A RANO review. J. Neurosurg. 2015, 122, 4–23. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, W.; Hou, Y.; Wen, C.; Wang, J.; Wu, P.; Guo, Z. An overview of managements in meningiomas. Front. Oncol. 2020, 10, 1523. [Google Scholar] [CrossRef]
- Holleczek, B.; Zampella, D.; Urbschat, S.; Sahm, F.; von Deimling, A.; Oertel, J.; Ketter, R. Incidence, mortality and outcome of meningiomas: A population-based study from Germany. Cancer Epidemiol. 2019, 62, 101562. [Google Scholar] [CrossRef]
- Perry, A. Meningiomas. In Practical Surgical Neuropathology: A Diagnostic Approach; Elsevier: Amsterdam, The Netherlands, 2018; pp. 259–298. [Google Scholar]
- Komaki, K.; Sano, N.; Tangoku, A. Problems in histological grading of malignancy and its clinical significance in patients with operable breast cancer. Breast Cancer 2006, 13, 249–253. [Google Scholar] [CrossRef]
- Grant, R.; Dowswell, T.; Tomlinson, E.; Brennan, P.M.; Walter, F.M.; Ben-Shlomo, Y.; Hunt, D.W.; Bulbeck, H.; Kernohan, A.; Robinson, T.; et al. Interventions to reduce the time to diagnosis of brain tumours. Cochrane Database Syst. Rev. 2020, 9, CD013564. [Google Scholar] [CrossRef] [PubMed]
- Shehab, M.; Abualigah, L.; Shambour, Q.; Abu-Hashem, M.A.; Shambour, M.K.Y.; Alsalibi, A.I.; Gandomi, A.H. Machine learning in medical applications: A review of state-of-the-art methods. Comput. Biol. Med. 2022, 145, 105458. [Google Scholar] [CrossRef]
- Fernando, T.; Gammulle, H.; Denman, S.; Sridharan, S.; Fookes, C. Deep learning for medical anomaly detection—A survey. ACM Comput. Surv. (CSUR) 2021, 54, 1–37. [Google Scholar] [CrossRef]
- Frid-Adar, M.; Diamant, I.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 2018, 321, 321–331. [Google Scholar] [CrossRef]
- Chan, H.P.; Hadjiiski, L.M.; Samala, R.K. Computer-aided diagnosis in the era of deep learning. Med. Phys. 2020, 47, e218–e227. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.J.; Liston, C. New machine-learning technologies for computer-aided diagnosis. Nat. Med. 2018, 24, 1304–1305. [Google Scholar] [CrossRef]
- Ge, C.; Gu, I.Y.H.; Jakola, A.S.; Yang, J. Deep Learning and multi-Sensor Fusion for Glioma Classification Using Multistream 2D Convolutional Networks. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2018), Honolulu, HI, USA, 17–21 July 2018; pp. 5894–5897. [Google Scholar]
- Ge, C.; Gu, I.Y.H.; Jakola, A.S.; Yang, J. Enlarged training dataset by pairwise GANs for molecular-based brain tumor classification. IEEE Access 2020, 8, 22560–22570. [Google Scholar] [CrossRef]
- Mzoughi, H.; Njeh, I.; Wali, A.; Slima, M.B.; BenHamida, A.; Mhiri, C.; Mahfoudhe, K.B. Deep multi-scale 3D convolutional neural network (CNN) for MRI gliomas brain tumor classification. J. Digit. Imaging 2020, 33, 903–915. [Google Scholar] [CrossRef]
- Dixit, A.; Nanda, A. An improved whale optimization algorithm-based radial neural network for multi-grade brain tumor classification. Vis. Comput. 2022, 38, 3525–3540. [Google Scholar] [CrossRef]
- Pinho, M.C.; Bera, K.; Beig, N.; Tiwari, P. MRI Morphometry in brain tumors: Challenges and opportunities in expert, radiomic, and deep-learning-based analyses. Brain Tumors 2021, 158, 323–368. [Google Scholar]
- Saeedi, S.; Rezayi, S.; Keshavarz, H.; Niakan Kalhori, S.R. MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques. BMC Med. Inform. Decis. Mak. 2023, 23, 16. [Google Scholar] [CrossRef] [PubMed]
- Saifullah, S.; Yudhana, A.; Suryotomo, A.P. Automatic Brain Tumor Segmentation: Advancing U-Net With ResNet50 Encoder for Precise Medical Image Analysis. IEEE Access 2025, 13, 43473–43489. [Google Scholar] [CrossRef]
- Khan, S.U.R.; Zhao, M.; Li, Y. Detection of MRI brain tumor using residual skip block based modified MobileNet model. Clust. Comput. 2025, 28, 248. [Google Scholar] [CrossRef]
- Rahman, T.; Islam, M.S.; Uddin, J. MRI-based brain tumor classification using a dilated parallel deep convolutional neural network. Digital 2024, 4, 529–554. [Google Scholar] [CrossRef]
- Abdusalomov, A.B.; Mukhiddinov, M.; Whangbo, T.K. Brain tumor detection based on deep learning approaches and magnetic resonance imaging. Cancers 2023, 15, 4172. [Google Scholar] [CrossRef]
- Ahuja, S.; Panigrahi, B.; Gandhi, T. Transfer Learning Based Brain Tumor Detection and Segmentation Using Superpixel Technique. In Proceedings of the 2020 International Conference on Contemporary Computing and Applications (IC3A 2020), Lucknow, India, 5–7 February 2020; pp. 244–249. [Google Scholar]
- Nickparvar, M. Brain Tumor MRI Dataset. Kaggle. 2021. Available online: https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset (accessed on 20 February 2025).
- Soltaninejad, M.; Zhang, L.; Lambrou, T.; Yang, G.; Allinson, N.; Ye, X. MRI Brain Tumor Segmentation and Patient Survival Prediction Using Random Forests and Fully Convolutional Networks. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Proceedings of the 3rd International Workshop BrainLes 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, 14 September 2017; Revised Selected Papers 3; Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M., Eds.; Springer: New York, NY, USA, 2018; pp. 204–215. [Google Scholar]
- Amin, J.; Sharif, M.; Raza, M.; Saba, T.; Anjum, M.A. Brain tumor detection using statistical and machine learning method. Comput. Methods Programs Biomed. 2019, 177, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Le, T.T.; Nguyen, T.V.; Nguyen, N.T. Enhancing MRI brain tumor segmentation with an additional classification network. In Proceedings of the International MICCAI Brainlesion Workshop, Lima, Peru, 4 October 2020; Springer: Cham, Switzerland, 2020; pp. 503–513. [Google Scholar]
- Maurya, U.; Kalyan, A.K.; Bohidar, S.; Sivakumar, S. Detection and Classification of Glioblastoma Brain Tumor. arXiv 2023, arXiv:2304.09133. [Google Scholar]
- Balaji, G.; Sen, R.; Kirty, H. Detection and classification of brain tumors using deep convolutional neural networks. arXiv 2022, arXiv:2208.13264. [Google Scholar]
- Siddique, M.A.B.; Sakib, S.; Khan, M.M.R.; Tanzeem, A.K.; Chowdhury, M.; Yasmin, N. Deep Convolutional Neural Networks Model-Based Brain Tumor Detection in Brain MRI Images. In Proceedings of the 2020 4th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC 2020), Coimbatore, India, 7–9 October 2020; pp. 909–914. [Google Scholar]
- Hamran, A.; Vaeztourshizi, M.; Esmaili, A.; Pedram, M. Brain Tumor Detection using Convolutional Neural Networks with Skip Connections. arXiv 2023, arXiv:2307.07503. [Google Scholar]
- Karimi, D.; Gholipour, A. Improving calibration and out-of-distribution detection in medical image segmentation with convolutional neural networks. arXiv 2020, arXiv:2004.06569. [Google Scholar]
- Gumaei, A.; Hassan, M.M.; Hassan, M.R.; Alelaiwi, A.; Fortino, G. A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification. IEEE Access 2019, 7, 36266–36273. [Google Scholar] [CrossRef]
- Asiri, A.A.; Aamir, M.; Shaf, A.; Ali, T.; Zeeshan, M.; Irfan, M.; Alshamrani, K.A.; Alshamrani, H.A.; Alqahtani, F.F.; Alshehri, A.H. Block-Wise Neural Network for Brain Tumor Identification in Magnetic Resonance Images. Comput. Mater. Contin. 2022, 73, 5735–5753. [Google Scholar] [CrossRef]
- Kumar, R.L.; Kakarla, J.; Isunuri, B.V.; Singh, M. Multi-class brain tumor classification using residual network and global average pooling. Multimed. Tools Appl. 2021, 80, 13429–13438. [Google Scholar] [CrossRef]
- Soltaninejad, M.; Zhang, L.; Lambrou, T.; Allinson, N.; Ye, X. Multimodal MRI brain tumor segmentation using random forests with features learned from fully convolutional neural network. arXiv 2017, arXiv:1704.08134. [Google Scholar]
- Karimi, D.; Gholipour, A. Improving calibration and out-of-distribution detection in deep models for medical image segmentation. IEEE Trans. Artif. Intell. 2022, 4, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Fard, A.S.; Reutens, D.C.; Vegh, V. CNNs and GANs in MRI-based cross-modality medical image estimation. arXiv 2021, arXiv:2106.02198. [Google Scholar]
- Swati, Z.N.K.; Zhao, Q.; Kabir, M.; Ali, F.; Ali, Z.; Ahmed, S.; Lu, J. Brain tumor classification for MR images using transfer learning and fine-tuning. Comput. Med. Imaging Graph. 2019, 75, 34–46. [Google Scholar] [CrossRef]
- Aamir, M.; Rahman, Z.; Dayo, Z.A.; Abro, W.A.; Uddin, M.I.; Khan, I.; Imran, A.S.; Ali, Z.; Ishfaq, M.; Guan, Y.; et al. A deep learning approach for brain tumor classification using MRI images. Comput. Electr. Eng. 2022, 101, 108105. [Google Scholar] [CrossRef]
- Dehkordi, A.A.; Hashemi, M.; Neshat, M.; Mirjalili, S.; Sadiq, A.S. Brain tumor detection and classification using a new evolutionary convolutional neural network. arXiv 2022, arXiv:2204.12297. [Google Scholar] [CrossRef]
- Ejaz, U.; Hamza, M.A.; Kim, H.c. Channel Attention for Fire and Smoke Detection: Impact of Augmentation, Color Spaces, and Adversarial Attacks. Sensors 2025, 25, 1140. [Google Scholar] [CrossRef]
- Apostolopoulos, I.D.; Papathanasiou, N.D.; Papandrianos, N.; Papageorgiou, E.; Apostolopoulos, D.J. Innovative attention-based explainable feature-fusion vgg19 network for characterising myocardial perfusion imaging spect polar maps in patients with suspected coronary artery disease. Appl. Sci. 2023, 13, 8839. [Google Scholar] [CrossRef]
- Xu, Z.; Guo, Y.; Saleh, J.H. Tackling small data challenges in visual fire detection: A deep convolutional generative adversarial network approach. IEEE Access 2020, 9, 3936–3946. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Howard, A.G. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Tan, M. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv 2019, arXiv:1905.11946. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NN, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?” Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar]
Model | Accuracy | Precision | Recall | F1-Score | mAP | Specificity | Mem (MB) | Inf. (ms) |
---|---|---|---|---|---|---|---|---|
VGG16 | 0.9371 | 0.9402 | 0.9371 | 0.9376 | 0.9770 | 0.9792 | 21,838.36 | 656.27 |
VGG19 | 0.9076 | 0.9111 | 0.9076 | 0.9082 | 0.9578 | 0.9693 | 23,848.27 | 956.54 |
InceptionV3 | 0.9095 | 0.9121 | 0.9095 | 0.9098 | 0.9552 | 0.9700 | 22,969.43 | 470.03 |
Xception | 0.9309 | 0.9342 | 0.9309 | 0.9312 | 0.9761 | 0.9771 | 23,280.75 | 1061.63 |
MobileNetV2 | 0.9233 | 0.9286 | 0.9233 | 0.9241 | 0.9651 | 0.9746 | 22,752.55 | 314.36 |
ResNet50V2 | 0.9390 | 0.9410 | 0.9390 | 0.9394 | 0.9705 | 0.9798 | 23,326.59 | 824.68 |
MobileNetV3Small | 0.6750 | 0.6842 | 0.6750 | 0.6763 | 0.6971 | 0.8920 | 22,217.88 | 439.11 |
MobileNetV3Large | 0.8253 | 0.8262 | 0.8253 | 0.8241 | 0.8595 | 0.9419 | 24,068.99 | 935.51 |
DenseNet121 | 0.9378 | 0.9395 | 0.9378 | 0.9382 | 0.9746 | 0.9794 | 23,489.23 | 648.06 |
DenseNet201 | 0.9409 | 0.9453 | 0.9409 | 0.9416 | 0.9718 | 0.9804 | 23,611.16 | 1102.99 |
EfficientNetV1B6 | 0.4023 | 0.3384 | 0.4023 | 0.2958 | 0.3884 | 0.8003 | 24,421.24 | 1005.71 |
EfficientNetV2B0 | 0.2426 | 0.0589 | 0.2426 | 0.0947 | 0.2500 | 0.7500 | 22,595.91 | 205.12 |
EfficientNetV1B7 | 0.3721 | 0.3714 | 0.3721 | 0.2761 | 0.3573 | 0.7903 | 23,385.66 | 1131.63 |
EfficientNetV2B1 | 0.2546 | 0.0648 | 0.2546 | 0.1033 | 0.2500 | 0.7500 | 22,527.89 | 240.97 |
EfficientNetV2B2 | 0.4230 | 0.4646 | 0.4230 | 0.4218 | 0.4075 | 0.8080 | 23,097.43 | 457.17 |
EfficientNetV2B3 | 0.4375 | 0.4389 | 0.4375 | 0.3783 | 0.3889 | 0.8123 | 24,452.49 | 676.55 |
Proposed | 0.9698 | 0.9699 | 0.9698 | 0.9698 | 0.9956 | 0.9900 | 26,226.17 | 5.13 |
Model | Accuracy | Precision | Recall | F1-Score | mAP | Specificity | Mem (MB) | Inf. (ms) |
---|---|---|---|---|---|---|---|---|
Saifullah et al. [28] | 0.9300 | 0.9285 | 0.9300 | 0.9292 | 0.9700 | 0.9670 | 25,000.00 | 25.00 |
Khan et al. [29] | 0.9320 | 0.9315 | 0.9320 | 0.9318 | 0.9720 | 0.9680 | 24,000.00 | 30.00 |
Rahman et al. [30] | 0.9330 | 0.9325 | 0.9330 | 0.9328 | 0.9740 | 0.9690 | 24,500.00 | 35.00 |
Proposed | 0.9698 | 0.9699 | 0.9698 | 0.9698 | 0.9956 | 0.9900 | 26,226.17 | 5.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.A.; Sugir, T.; Dorj, B.; Uuganchimeg, G.; Paek, S.; Zagarzusem, K.; Park, H. Multi-Path Convolutional Architecture with Channel-Wise Attention for Multiclass Brain Tumor Detection in Magnetic Resonance Imaging Scans. Electronics 2025, 14, 1741. https://doi.org/10.3390/electronics14091741
Khan MA, Sugir T, Dorj B, Uuganchimeg G, Paek S, Zagarzusem K, Park H. Multi-Path Convolutional Architecture with Channel-Wise Attention for Multiclass Brain Tumor Detection in Magnetic Resonance Imaging Scans. Electronics. 2025; 14(9):1741. https://doi.org/10.3390/electronics14091741
Chicago/Turabian StyleKhan, Muneeb A., Tsagaanchuluun Sugir, Byambaa Dorj, Ganchimeg Uuganchimeg, Seonuck Paek, Khurelbaatar Zagarzusem, and Heemin Park. 2025. "Multi-Path Convolutional Architecture with Channel-Wise Attention for Multiclass Brain Tumor Detection in Magnetic Resonance Imaging Scans" Electronics 14, no. 9: 1741. https://doi.org/10.3390/electronics14091741
APA StyleKhan, M. A., Sugir, T., Dorj, B., Uuganchimeg, G., Paek, S., Zagarzusem, K., & Park, H. (2025). Multi-Path Convolutional Architecture with Channel-Wise Attention for Multiclass Brain Tumor Detection in Magnetic Resonance Imaging Scans. Electronics, 14(9), 1741. https://doi.org/10.3390/electronics14091741