A Critical Review of Techniques for the Experimental Extraction of the Thermal Resistance of Bipolar Transistors from DC Measurements—Part II: Approaches Based on Intersection Points
Abstract
:1. Introduction
- A technique relying on analytical assumptions that allows for the full evaluation of nonlinear thermal effects [47].
2. Thermal Resistance: Theoretical Background
3. Devices Under Test and Methodology
3.1. Devices Under Test
3.2. Methodology
4. Analysis of Experimental RTH Extraction Techniques Based on Intersection Points
4.1. Liu and Yuksel [39]
4.2. Marsh [40]
4.3. Berkner [41]
4.4. Huszka et al. [29]
4.5. Summary of the Main Findings
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Latif, M.; Bryant, P.R. Multiple equilibrium points and their significance in the second breakdown of bipolar transistors. IEEE J. Solid-State Circuits 1981, SC-16, 8–15. [Google Scholar] [CrossRef]
- Nenadović, N.; d’Alessandro, V.; Nanver, L.K.; Tamigi, F.; Rinaldi, N.; Slotboom, J.W. A back-wafer contacted silicon-on-glass integrated bipolar process–Part II: A novel analysis of thermal breakdown. IEEE Trans. Electron Devices 2004, 51, 51–62. [Google Scholar] [CrossRef]
- Rinaldi, N.; d’Alessandro, V. Theory of electrothermal behavior of bipolar transistors: Part I–Single-finger devices. IEEE Trans. Electron Devices 2005, 52, 2009–2021. [Google Scholar] [CrossRef]
- Vanhoucke, T.; Hurkx, G.A.M. Unified electro-thermal stability criterion for bipolar transistors. In Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Santa Barbara, CA, USA, 9–11 October 2005; pp. 37–40. [Google Scholar]
- La Spina, L.; d’Alessandro, V.; Russo, S.; Rinaldi, N.; Nanver, L.K. Influence of concurrent electrothermal and avalanche effects on the safe operating area of multifinger bipolar transistors. IEEE Trans. Electron Devices 2009, 56, 483–491. [Google Scholar] [CrossRef]
- Lee, C.-P.; Tao, N.G.M.; Barry, J.-F.L. Studies of safe operating area of InGaP/GaAs heterojunction bipolar transistors. IEEE Trans. Electron Devices 2014, 61, 943–949. [Google Scholar] [CrossRef]
- Gao, G.-B.; Wang, M.-Z.; Gui, X.; Morkoç, H. Thermal design studies of high-power heterojunction bipolar transistors. IEEE Trans. Electron Devices 1989, 36, 854–863. [Google Scholar]
- Seiler, U.; Koenig, E.; Narozny, P.; Dämbkes, H. Thermally triggered collapse of collector current in power heterojunction bipolar transistors. In Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Minneapolis, MN, USA, 4–5 October 1993; pp. 257–260. [Google Scholar]
- Liu, W.; Nelson, S.; Hill, D.G.; Khatibzadeh, A. Current gain collapse in microwave multifinger heterojunction bipolar transistors operated at very high power densities. IEEE Trans. Electron Devices 1993, 40, 1917–1927. [Google Scholar] [CrossRef]
- Liou, L.L.; Bayraktaroglu, B. Thermal stability analysis of AlGaAs/GaAs heterojunction bipolar transistors with multiple emitter fingers. IEEE Trans. Electron Devices 1994, 41, 629–636. [Google Scholar] [CrossRef]
- Liu, W.; Khatibzadeh, A. The collapse of current gain in multi-finger heterojunction bipolar transistors: Its substrate temperature dependence, instability criteria, and modeling. IEEE Trans. Electron Devices 1994, 41, 1698–1707. [Google Scholar] [CrossRef]
- Liu, W. Thermal coupling in 2-finger heterojunction bipolar transistors. IEEE Trans. Electron Devices 1995, 42, 1033–1038. [Google Scholar] [CrossRef]
- Dhondt, F.; Barrette, J.; Rolland, P.A. Transient analysis of collector current collapse in multifinger HBT’s. IEEE Microw. Guid. Wave Lett. 1998, 8, 272–274. [Google Scholar] [CrossRef]
- Rinaldi, N.; d’Alessandro, V. Theory of electrothermal behavior of bipolar transistors: Part II—Two-finger devices. IEEE Trans. Electron Devices 2005, 52, 2022–2033. [Google Scholar] [CrossRef]
- Nenadović, N.; d’Alessandro, V.; La Spina, L.; Rinaldi, N.; Nanver, L.K. Restabilizing mechanism after the onset of thermal instability in bipolar transistors. IEEE Trans. Electron Devices 2006, 53, 643–653. [Google Scholar] [CrossRef]
- d’Alessandro, V.; Catalano, A.P.; Scognamillo, C.; Codecasa, L.; Zampardi, P.J. Analysis of electrothermal effects in devices and arrays in InGaP/GaAs HBT technology. Electronics 2021, 10, 757. [Google Scholar] [CrossRef]
- Rinaldi, N.; d’Alessandro, V.; Nanver, L.K. Analysis of the bipolar current mirror including electrothermal and avalanche effects. IEEE Trans. Electron Devices 2009, 56, 1309–1321. [Google Scholar] [CrossRef]
- Rinaldi, N. Small-signal operation of semiconductor devices including self-heating, with application to thermal characterization and instability analysis. IEEE Trans. Electron Devices 2001, 48, 323–331. [Google Scholar] [CrossRef]
- Rieh, J.-S.; Greenberg, D.; Liu, Q.; Joseph, A.J.; Freeman, G.; Ahlgren, D.C. Structure optimization of trench-isolated SiGe HBTs for simultaneous improvements in thermal and electrical performances. IEEE Trans. Electron Devices 2005, 52, 2744–2752. [Google Scholar] [CrossRef]
- Higgins, J.A. Thermal properties of power HBT’s. IEEE Trans. Electron Devices 1993, 40, 2171–2177. [Google Scholar] [CrossRef]
- Sevimli, O.; Parker, A.E.; Fattorini, A.P.; Mahon, S.J. Measurement and modeling of thermal behavior in InGaP/GaAs HBTs. IEEE Trans. Electron Devices 2013, 60, 1632–1639. [Google Scholar] [CrossRef]
- d’Alessandro, V.; Catalano, A.P.; Codecasa, L.; Zampardi, P.J.; Moser, B. InGaP/GaAs HBTs through an automated FEM-based tool and Design of Experiments. Int. J. Numer. Model. 2019, 32, e2530. [Google Scholar] [CrossRef]
- d’Alessandro, V.; Marano, I.; Russo, S.; Céli, D.; Chantre, A.; Chevalier, P.; Pourchon, F.; Rinaldi, N. Impact of layout and technology parameters on the thermal resistance of SiGe:C HBTs. In Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Austin, TX, USA, 4–6 October 2010; pp. 137–140. [Google Scholar]
- Hasnaoui, I.; Pottrain, A.; Gloria, D.; Chevalier, P.; Avramovic, V.; Gaquiere, C. Self-heating characterization of SiGe:C HBTs by extracting thermal impedances. IEEE Electron Device Lett. 2012, 33, 1762–1764. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Frégonèse, S.; Weiß, M.; Malbert, N.; Zimmer, T. A scalable electrothermal model for transient self-heating effects in trench-isolated SiGe HBTs. IEEE Trans. Electron Devices 2012, 59, 2619–2625. [Google Scholar] [CrossRef]
- d’Alessandro, V.; Sasso, G.; Rinaldi, N.; Aufinger, K. Influence of scaling and emitter layout on the thermal behavior of toward-THz SiGe:C HBTs. IEEE Trans. Electron Devices 2014, 61, 3386–3394. [Google Scholar] [CrossRef]
- Balanethiram, S.; Berkner, J.; D’Esposito, R.; Frégonèse, S.; Céli, D.; Zimmer, T. Extracting the temperature dependence of thermal resistance from temperature-controlled DC measurements of SiGe HBTs. In Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Miami, FL, USA, 19–21 October 2017; pp. 94–97. [Google Scholar]
- Balanethiram, S.; D’Esposito, R.; Frégonèse, S.; Chakravorty, A.; Zimmer, T. Validation of thermal resistance extracted from measurements on stripe geometry SiGe HBTs. IEEE Trans. Electron Devices 2019, 66, 4151–4155. [Google Scholar] [CrossRef]
- Huszka, Z.; Nidhin, K.; Céli, D.; Chakravorty, A. Extraction of compact static thermal model parameters for SiGe HBTs. IEEE Trans. Electron Devices 2021, 68, 491–496. [Google Scholar] [CrossRef]
- d’Alessandro, V.; Catalano, A.P.; Scognamillo, C.; Müller, M.; Schröter, M.; Zampardi, P.J.; Codecasa, L. A critical review of techniques for the experimental extraction of the thermal resistance of bipolar transistors from DC measurements–Part I: Thermometer-based approaches. Electronics 2023, 12, 3471. [Google Scholar] [CrossRef]
- Dawson, D.E.; Gupta, A.K.; Salib, M.L. CW measurements of HBT thermal resistance. IEEE Trans. Electron Devices 1992, 39, 2235–2239. [Google Scholar] [CrossRef]
- Bovolon, N.; Baureis, P.; Müller, J.-E.; Zwicknagl, P.; Schultheis, R.; Zanoni, E. A simple method for the thermal resistance measurement of AlGaAs/GaAs heterojunction bipolar transistors. IEEE Trans. Electron Devices 1998, 45, 1846–1848. [Google Scholar] [CrossRef]
- Yeats, B. Inclusion of topside metal heat spreading in the determination of HBT temperatures by electrical and geometrical methods. In Proceedings of the Technical Digest of the IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, Monterey, CA, USA, 17–20 October 1999; pp. 59–62. [Google Scholar]
- Rieh, J.-S.; Greenberg, D.; Jagannathan, B.; Freeman, G.; Subanna, S. Measurement and modeling of thermal resistance of high speed SiGe heterojunction bipolar transistors. In Proceedings of the Digest of Papers of the IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Ann Arbor, MI, USA, 14 September 2001; pp. 110–113. [Google Scholar]
- Pfost, M.; Kubrak, V.; Brenner, P. A practical method to extract the thermal resistance for heterojunction bipolar transistors. In Proceedings of the IEEE Conference on European Solid-State Device Research (ESSDERC), Estoril, Portugal, 16–18 September 2003; pp. 335–338. [Google Scholar]
- Vanhoucke, T.; Boots, H.M.J.; van Noort, W.D. Revised method for extraction of the thermal resistance applied to bulk and SOI SiGe HBTs. IEEE Electron Device Lett. 2004, 25, 150–152. [Google Scholar] [CrossRef]
- Koné, G.A. Caractérisation des Effets Thermiques et des Mécanismes de Défaillance Spécifiques aux Transistors Bipolaires Submicroniques sur Substrat InP Dédiés aux Transmissions. Ph.D. Thesis, University of Bordeaux 1, Talence, France, 20 December 2011. [Google Scholar]
- d’Alessandro, V. Experimental DC extraction of the thermal resistance of bipolar transistors taking into account the Early effect. Solid-State Electron. 2017, 127, 5–12. [Google Scholar] [CrossRef]
- Liu, W.; Yuksel, A. Measurement of junction temperature of an AlGaAs/GaAs heterojunction bipolar transistor operating at large power densities. IEEE Trans. Electron Devices 1995, 42, 358–360. [Google Scholar] [CrossRef]
- Marsh, S.P. Direct extraction technique to derive the junction temperature of HBT’s under high self-heating bias conditions. IEEE Trans. Electron Devices 2000, 47, 288–291. [Google Scholar] [CrossRef]
- Berkner, J. Extraction of thermal resistance and its temperature dependence using DC methods. Presented at HICUM Workshop, Dresden, Germany, 18–19 June 2007; Available online: https://www.iee.et.tu-dresden.de/iee/eb/forsch/Models/workshop0607/contr/Berkner_Infineon_HICUM_WS_2007_Dresden_070621s.pdf (accessed on 1 August 2022).
- Reisch, M. Self-heating in BJT circuit parameter extraction. Solid-State Electron. 1992, 35, 677–679. [Google Scholar] [CrossRef]
- Zweidinger, D.T.; Fox, R.M.; Brodsky, J.S.; Jung, T.; Lee, S.-G. Thermal impedance extraction for bipolar transistors. IEEE Trans. Electron Devices 1996, 43, 342–346. [Google Scholar] [CrossRef]
- Tran, H.; Schröter, M.; Walkey, D.J.; Marchesan, D.; Smy, T.J. Simultaneous extraction of thermal and emitter series resistances in bipolar transistors. In Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Minneapolis, MN, USA, 28–30 September 1997; pp. 170–173. [Google Scholar]
- Williams, D.; Tasker, P. Thermal parameter extraction technique using DC I–V data for HBT transistors. In Proceedings of the IEEE High Frequency Postgraduate Student Colloquium, Dublin, Ireland, 7–8 September 2000; pp. 71–75. [Google Scholar]
- Pawlak, A.; Lehmann, S.; Schröter, M. A simple and accurate method for extracting the emitter and thermal resistance of BJTs and HBTs. In Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Coronado, CA, USA, 28 September–1 October 2014; pp. 175–178. [Google Scholar]
- Menozzi, R.; Barrett, J.; Ersland, P. A new method to extract HBT thermal resistance and its temperature and power dependence. IEEE Trans. Device Mater. Reliab. 2005, 5, 595–601. [Google Scholar] [CrossRef]
- d’Alessandro, V.; Catalano, A.P.; Scognamillo, C.; Müller, M.; Schröter, M.; Zampardi, P.J.; Codecasa, L. Experimental determination, modeling, and simulation of nonlinear thermal effects in bipolar transistors under static conditions: A critical review and update. Energies 2022, 15, 5457. [Google Scholar] [CrossRef]
- Walkey, D.J.; Smy, T.J.; Macelwee, T.; Maliepaard, M. Compact representation of temperature and power dependence of thermal resistance in Si, InP and GaAs substrate devices using linear models. Solid-State Electron. 2002, 46, 819–826. [Google Scholar] [CrossRef]
- Paasschens, J.C.J.; Harmsma, S.; van der Toorn, R. Dependence of thermal resistance on ambient and actual temperature. In Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Montreal, QC, Canada, 12–14 September 2004; pp. 96–99. [Google Scholar]
- Carlslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids, 2nd ed.; Oxford University Press: London, UK, 1959. [Google Scholar]
- Joyce, W.B. Thermal resistance of heat sinks with temperature-dependent conductivity. Solid-State Electron. 1975, 18, 321–322. [Google Scholar] [CrossRef]
- PSpice® User Guide, Cadence OrCAD, Version 16.5. 2011. Available online: https://home.agh.edu.pl/~godek/pspug.pdf (accessed on 4 March 2024).
- COMSOL Multiphysics, User’s Guide, Release 5.3a, Dec. 2017. Available online: https://www.comsol.it/blogs/introducing-comsol-software-version-5-3a (accessed on 4 March 2024).
- Raya, C.; Ardouin, B.; Huszka, Z. Improving parasitic emitter resistance determination methods for advanced SiGe:C HBT transistors. In Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Atlanta, GA, USA, 9–11 October 2011. [Google Scholar]
- Krause, J.; Schröter, M. Methods for determining the emitter resistance in SiGe HBTs: A review and an evaluation across technology generations. IEEE Trans. Electron Devices 2015, 62, 1363–1374. [Google Scholar] [CrossRef]
- McAndrew, C.C. A complete and consistent electrical/thermal HBT model. In Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Minneapolis, MN, USA, 7–8 October 1992; pp. 200–203. [Google Scholar]
- Liou, L.L.; Bayraktaroglu, B.; Huang, C.I. Theoretical thermal runaway analysis of heterojunction bipolar transistors: Junction temperature rise threshold. Solid-State Electron. 1996, 39, 165–172. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Common-emitter current gain βF at 300 K and medium current levels | 150 |
Open-emitter breakdown voltage BVCBO | 27 V |
Open-base breakdown voltage BVCEO | 17 V |
Peak cut-off frequency fT for VCE = 3 V | 40 GHz |
Collector current density JC at peak fT for VCE = 3 V | 0.2 mA/µm2 |
Maximum oscillation frequency fMAX for VCE = 3 V | 82 GHz |
Parameter | Value |
---|---|
Common-emitter current gain βF at 300 K and medium current levels | 2200 |
Open-emitter breakdown voltage BVCBO | 5.5 V |
Open-base breakdown voltage BVCEO | 1.6 V |
Peak cut-off frequency fT for VCB = 0.5 V | 240 GHz |
Collector current density JC at peak fT for VCB = 0.5 V | 10 mA/µm2 |
Maximum oscillation frequency fMAX for VCB = 0.5 V | 380 GHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
d’Alessandro, V.; Catalano, A.P.; Scognamillo, C. A Critical Review of Techniques for the Experimental Extraction of the Thermal Resistance of Bipolar Transistors from DC Measurements—Part II: Approaches Based on Intersection Points. Electronics 2025, 14, 1743. https://doi.org/10.3390/electronics14091743
d’Alessandro V, Catalano AP, Scognamillo C. A Critical Review of Techniques for the Experimental Extraction of the Thermal Resistance of Bipolar Transistors from DC Measurements—Part II: Approaches Based on Intersection Points. Electronics. 2025; 14(9):1743. https://doi.org/10.3390/electronics14091743
Chicago/Turabian Styled’Alessandro, Vincenzo, Antonio Pio Catalano, and Ciro Scognamillo. 2025. "A Critical Review of Techniques for the Experimental Extraction of the Thermal Resistance of Bipolar Transistors from DC Measurements—Part II: Approaches Based on Intersection Points" Electronics 14, no. 9: 1743. https://doi.org/10.3390/electronics14091743
APA Styled’Alessandro, V., Catalano, A. P., & Scognamillo, C. (2025). A Critical Review of Techniques for the Experimental Extraction of the Thermal Resistance of Bipolar Transistors from DC Measurements—Part II: Approaches Based on Intersection Points. Electronics, 14(9), 1743. https://doi.org/10.3390/electronics14091743