False Positive Decremented Research for Fire and Smoke Detection in Surveillance Camera using Spatial and Temporal Features Based on Deep Learning
Abstract
:1. Introduction
2. Deep Learning (Faster R-CNN)
2.1. Labeling Dataset
2.2. Training Data with Faster R-CNN
2.3. Creating Inference Graph
3. Feature Extraction Methods
3.1. Structural Similarity
3.2. RGB Color Histogram
- H: 0 to 40
- S: 100 to 255
- V: 80 to 255
3.3. Coefficient of Variation (CV)
3.4. Wavelet Transform
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Evarts, B. Fire Loss in the United States during 2017. Available online: https://www.nfpa.org/~/media/FD0144A044C84FC5BAF90C05C04890B7.ashx (accessed on 14 October 2019).
- Lee, B.; Kwon, O.; Jung, C.; Park, S. The development of UV-IR combination flame detector. J. KIIS 2001, 16, 1–8. [Google Scholar]
- Kang, D.; Kim, E.; Moon, P.; Sin, W.; Kang, M. Design and analysis of flame signal detection with the combination of UV/IR sensors. J. Korean Soc. Int. Inf. 2013, 14, 45–51. [Google Scholar]
- Lee, D.H.; Lee, S.W.; Byun, T.; Cho, N.I. Fire detection using color and motion models. IEIE Trans. Smart Process. Comput. 2017, 6, 237–245. [Google Scholar] [CrossRef]
- Yuan, F.; Shi, J.; Xia, X.; Fang, Y.; Mei, Z.F.T. High-order local ternary patterns with locality preserving projection for smoke detection and image classification. Inf. Sci. 2016, 372, 225–239. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Tian, Y.; Huang, T. Wavelet based smoke detection method with RGB contrast-image and shape constrain. In Proceedings of the 2013 Visual Communications and Image Processing (VCIP), Kuching, Malaysia, 23–27 November 2013. [Google Scholar]
- Yuan, F. A fast accumulative motion orientation model based on integral image for video smoke detection. Pattern Recognit. 2008, 29, 925–932. [Google Scholar] [CrossRef]
- Yu, C.; Mei, Z.; Zhang, X. A real-time video fire flame and smoke detection algorithm. Proc. Eng. 2013, 62, 891–898. [Google Scholar] [CrossRef]
- Zhou, Z.; Shi, Y.; Gao, Z.; Li, S. Wildfire smoke detection based on local extremal region segmentation and surveillance. Fire Saf. J. 2016, 85, 55–58. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Q.; Gu, Z. Early smoke detection of forest fire video using CS Adaboost algorithm. Optik 2015, 126, 2121–2124. [Google Scholar] [CrossRef]
- Nowzad, A.; Jok, A.; Reulke, R.; Jackel, K. False Alarm Reduction in Image-Based Smoke Detection Algorithm Using Color Information FWS 2015. Available online: https://www.researchgate.net/publication/296483761_False_Alarm_Reduction_in_Image-Based_Smoke_Detection_Algorithm_Using_Color_Information (accessed on 14 October 2019).
- Zhao, Y.; Ma, J.; Li, X.; Zhang, J. Saliency detection and deep learning-based wildfire identification in UAV imagery. Sensors 2018, 18, 712. [Google Scholar] [CrossRef]
- Noda, S.; Ueda, K. Fire detection in tunnels using an image processing method. In Proceedings of the Vehicle Navigation & Information Systems Conference, Yokohama, Japan, 31 August–2 September 1994; pp. 57–62. [Google Scholar]
- Breejen, E.D.; Breuers, M.; Cremer, F.; Kemp, R.; Roos, M.; Schutte, K.; de Vries, J.S. Autonomous forest fire detections. In Proceedings of the International Conference on Forest Fire Research 14th Conference on Fire and Forest Meteorology, Coimbra, Portugal, 16–20 November 1998; Volume 2, pp. 2003–2012. [Google Scholar]
- Yamagish, H.; Yamaguchi, J. Fire flame detection algorithm using a color camera. In Proceedings of the International Symposium on Micromechatronics and Human Science, Nagoya, Japan, 23–26 November 1999. [Google Scholar]
- Beall, K.; Grosshadler, W.; Luck, H. Smoldering fire detection by image-processing. In Proceedings of the 12th International Conference on Automatic Fire Detection, Gaithersburg, MD, USA, 26–28 March 2001. [Google Scholar]
- Qiu, T.; Yan, Y.; Lu, G. An autoadaptive edge-detection algorithm for flame and fire image processing. IEEE Trans. Instrum. Meas. 2012, 61, 1486–1493. [Google Scholar] [CrossRef]
- Liu, C.B.; Ahuja, N. Vision based fire detection. In Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004), Cambridge, UK, 26 August 2004; pp. 134–137. [Google Scholar]
- Celik, T.; Demirel, H.; Ozkaramanli, H.; Uyguroglu, M. Fire detection using statistical color model in video sequences. J. Vis. Commun. Image Represent. 2007, 18, 176–185. [Google Scholar] [CrossRef]
- Ko, B.C.; Ham, S.J.; Nam, J.Y. Modeling and formalization of fuzzy finite automata for detection of irregular fire flames. IEEE Trans. Circ. Syst. Video Technol. 2011, 21, 1903–1912. [Google Scholar] [CrossRef]
- Ye, W.; Zhao, J.; Wang, S.; Wang, Y.; Zhang, D.; Yuan, Z. Dynamic texture based smoke detection using Surfacelet transform and HMT model. Fire Saf. J. 2015, 73, 91–101. [Google Scholar] [CrossRef]
- Li, J.; Qi, Q.; Zou, X.; Peng, H.; Jiang, L.; Liang, Y. Technique for automatic forest fire surveillance using visible light image. IGSNNRR CAS 2005, 3135–3138. [Google Scholar]
- Celik, T.; Ma, K.K. Computer vision based fire detection in color images. In Proceedings of the 2008 IEEE Conference on Soft Computing in Industrial Applications, Muroran, Japan, 25–27 June 2008; pp. 258–263. [Google Scholar]
- Toreyin, B.U.; Dedeoglu, Y.; Cetin, A.E. Flame detection In Video Using Hidden Markov Models. In Proceedings of the IEEE International Conference on Image Processing, Piscataway, NJ, USA, 14 September 2005; pp. 1230–1233. [Google Scholar]
- Zhang, Z.; Zhao, J.; Zhang, D.; Qu, C.; Ke, Y.; Cai, B. Contour based forest fire detection using FFT and wavelet. In Proceedings of the International Conference on Computer Science and Software Engineering, Wuhan, China, 12–14 December 2008; pp. 760–763. [Google Scholar]
- Celik, T. Fast and efficient method for fire detection using image processing. ETRI J. 2010, 32, 881–890. [Google Scholar] [CrossRef]
- Chen, T.H.; Wu, P.H.; Chiou, Y.C. An early fire-detection method based on image processing. In Proceedings of the 2004 International Conference on Image Processing, Singapore, 24–27 October 2004; pp. 1707–1710. [Google Scholar]
- Töreyin, B.U.; Dedeoglu, Y.; Gudukbay, U.; Cetin, A.E. Computer vision based method for real-time fire and flame detection. Pattern Recognit. Lett. 2006, 27, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F. Video-based smoke detection with histogram sequence of LBP and LBPV pyramids. Fire Saf. J. 2011, 46, 132–139. [Google Scholar] [CrossRef]
- Celik, T.; Demirel, H. Fire detection in video sequences using a generic color model. Fire Saf. J. 2009, 44, 147–158. [Google Scholar] [CrossRef]
- Fujiwara, N.; Kenji Terada, K. Extraction of a smoke region using fractal coding. In Proceedings of the IEEE International Symposium on Communications and Information Technology, Sapporo, Japan, 26–29 October 2001. [Google Scholar]
- Phillips, W.; Shah, M.; Lobo, N.D.V. Frame recognition in video. Pattern Recognit. Lett. 2002, 23, 319–327. [Google Scholar] [CrossRef]
- Tian, H.; Li, W.; Wang, L.; Ogunbona, P. A novel video-based smoke detection method using image separation. In Proceedings of the 2012 IEEE International Conference on Multimedia and Expo, Melbourne, Australia, 9–13 July 2012; pp. 532–537. [Google Scholar]
- Barmpoutis, P.; Dimitropoulos, K.; Kaza, K.; Grammalidis, N. Fire detection from image using faster R-CNN and multidimensional texture analysis. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019. [Google Scholar]
- Jadon, A.; Omama, M.; Varshney, A.; Ansari, M.S.; Sharma, R. FireNet: A Specialized Lightweight Fire & Smoke Detection Model for Real-Time IoT Applications. In Proceedings of the IEEE Region 10 Conference (TENCON 2019), Kochi, Kerala, India, 17–20 October 2019. [Google Scholar]
- Lee, Y.; Kim, T.; Shim, J. Smoke detection system research using fully connected method based on adaboost. J. Multimed. Inf. Syst. 2017, 4, 479–482. [Google Scholar]
- Frizzi, S.; Kaabi, R.; Bouchouicha, M.; Ginoux, J.; Moreau, E.; Fnaiech, F. Convolutional neural network for video fire and smoke detection. In Proceedings of the Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 877–882. [Google Scholar]
- Sang, W. Implementation of image based fire detection system using convolution neural Network. J. Korea Inst. Electron. Commun. Sci. 2017, 12, 331–336. [Google Scholar]
- Wu, X.; Lu, X.; Leung, H. An adaptive threshold deep learning method for fire and smoke detection. In Proceedings of the International Conference on Systems, Man, and Cybernetics, Banff, AB, Canada, 5–8 October 2017; pp. 1954–1959. [Google Scholar]
- Shen, D.; Chen, X.; Nguyen, M.; Yan, W.Q. Flame detection using deep learning. In Proceedings of the International Conference on Control, Automation and Robotics, Singapore, 18–21 November 2018. [Google Scholar]
- Muhammad, K.; Ahmad, J.; Baik, S.W. Early fire detection using convolutional neural networks during surveillance for effective disaster management. J. Neurocomput. 2018, 288, 30–42. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, J.; Xu, L.; Guo, H. Deep convolutional neural networks for forest fire detection. In Proceedings of the 2016 International Forum on Management, Education and Information Technology Application, Guangzhou, China, 30–31 January 2016. [Google Scholar]
- Muhammad, K.; Ahmad, J.; Lv, Z.; Bellavista, P.; Yang, P.; Baik, S.W. Efficient deep CNN-based fire detection and localization in video surveillance applications. IEEE Trans. Syst. Man Cybern. Syst. 2018, 49, 1419–1434. [Google Scholar] [CrossRef]
- Muhammad, K.; Ahmad, J.; Mehmood, I.; Rho, S.; Baik, S.W. Convolutional neural networks based fire detection in surveillance videos. IEEE Access 2018, 6, 18174–18183. [Google Scholar] [CrossRef]
- Muhammad, K.; Khan, S.; Elhoseny, M.; Ahmed, S.H.; Baik, S.W. Efficient fire detection for uncertain surveillance environment. IEEE Trans. Ind. Inf. 2019, 15, 3113–3122. [Google Scholar] [CrossRef]
- Foggia, P.; Saggese, A.; Vento, M. Real-time fire detection for video-surveillance applications using a combination of experts based on color, shape, and motion. IEEE Trans. Circ. Syst. Video Technol. 2015, 25, 1545–1556. [Google Scholar] [CrossRef]
- Zhang, Q.X.; Lin, G.H.; Zhang, Y.M.; Xu, G.; Wang, J.J. Wildland forest fire smoke detection based on faster RCNN using synthetic smoke images. Procedia Eng. 2018, 441–446. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, QC, Canada, 7–12 December 2015. [Google Scholar]
- Lee, Y.; Ansari, I.; Shim, J. Rear-approaching vehicle detection using frame similarity base on faster R-CNN. Int. J. Eng. Technol. 2018, 7, 177–180. [Google Scholar] [CrossRef]
- Coefficient Variance. Available online: https://en.wikipedia.org/wiki/Coefficient_of_variation (accessed on 12 August 2019).
- Chui, C.K. An Introduction to Wavelets; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Wei, Y.; Chunyu, Y.; Yongming, Z. Based on wavelet transformation fire smoke detection method. In Proceedings of the 2009 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 16–19 August 2009. [Google Scholar]
- Toreyin, B.U.; Dedeoglu, Y.; Cetin, A.E. Wavelet based real-time smoke detection in video. In Proceedings of the 13th European Signal Processing Conference, Antalya, Turkey, 4–8 September 2005. [Google Scholar]
- Toreyin, B.U.; Dedeoglu, Y.; Cetin, A.E. Contour based smoke detection in video using wavelets. In Proceedings of the 14th European Signal Processing Conference, Florence, Italy, 4–8 September 2006. [Google Scholar]
- Zhang, Y.; Wang, X.; Qu, B. Three-Frame Difference Algorithm Research Based on Mathematical Morphology. Procedia Eng. 2012, 29, 2705–2709. [Google Scholar] [CrossRef] [Green Version]
Videos | Ground Truth | True Positive | True Negative | False Positive |
---|---|---|---|---|
Video 1 (F/S) | 85 | 85 | 0 | 0 |
Video 2 (F/S) | 102 | 102 | 0 | 0 |
Video 3 (F/S) | 890 | 890 | 0 | 890 |
Video 4 (F/S) | 1159 | 1159 | 0 | 0 |
Video 5 (F/S) | 1477 | 1477 | 0 | 0 |
Video 6 (F/S) | 1112 | 1112 | 0 | 0 |
Video 7 (F/S) | 544 | 544 | 0 | 7 |
Video 8 (F/S) | 1940 | 1940 | 0 | 0 |
Video 9 (NON) | 12112 | 0 | 11984 | 128 |
Video 10 (NON) | 15015 | 0 | 15009 | 6 |
Video 11 (NON) | 6745 | 0 | 6639 | 106 |
Video 12 (NON) | 14949 | 0 | 14943 | 6 |
Video 13 (NON) | 14891 | 0 | 14875 | 16 |
Video 14 (NON) | 14975 | 0 | 14965 | 10 |
Video 15 (NON) | 4402 | 0 | 4387 | 15 |
Video 16 (NON) | 13454 | 0 | 13448 | 6 |
Videos | Ground Truth | True Positive | True Negative | False Positive |
---|---|---|---|---|
Video 1 (F/M) | 85 | 85 | 0 | 0 |
Video 2 (F/M) | 102 | 102 | 0 | 0 |
Video 3 (F/M) | 890 | 888 | 0 | 0 |
Video 4 (F/M) | 1159 | 1158 | 0 | 0 |
Video 5 (F/M) | 1477 | 1477 | 0 | 0 |
Video 6 (F/M) | 1112 | 1112 | 0 | 0 |
Video 7 (F/M) | 544 | 502 | 0 | 0 |
Video 8 (F/M) | 1040 | 949 | 0 | 0 |
Video 9 (NON) | 12112 | 0 | 12112 | 0 |
Video 10 (NON) | 15015 | 0 | 15015 | 0 |
Video 11 (NON) | 6745 | 0 | 6745 | 0 |
Video 12 (NON) | 14949 | 0 | 14949 | 0 |
Video 13 (NON) | 14891 | 0 | 14891 | 0 |
Video 14 (NON) | 14975 | 0 | 14975 | 0 |
Video 15 (NON) | 4402 | 0 | 4402 | 0 |
Video 16 (NON) | 13454 | 0 | 13454 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Shim, J. False Positive Decremented Research for Fire and Smoke Detection in Surveillance Camera using Spatial and Temporal Features Based on Deep Learning. Electronics 2019, 8, 1167. https://doi.org/10.3390/electronics8101167
Lee Y, Shim J. False Positive Decremented Research for Fire and Smoke Detection in Surveillance Camera using Spatial and Temporal Features Based on Deep Learning. Electronics. 2019; 8(10):1167. https://doi.org/10.3390/electronics8101167
Chicago/Turabian StyleLee, Yeunghak, and Jaechang Shim. 2019. "False Positive Decremented Research for Fire and Smoke Detection in Surveillance Camera using Spatial and Temporal Features Based on Deep Learning" Electronics 8, no. 10: 1167. https://doi.org/10.3390/electronics8101167
APA StyleLee, Y., & Shim, J. (2019). False Positive Decremented Research for Fire and Smoke Detection in Surveillance Camera using Spatial and Temporal Features Based on Deep Learning. Electronics, 8(10), 1167. https://doi.org/10.3390/electronics8101167