Wearable Triband E-Shaped Dipole Antenna with Low SAR for IoT Applications
Abstract
:1. Introduction
2. Antenna Geometry Configuration and Substrate Selection
3. Results and Discussions
3.1. Return Loss Simulation and Measurements
3.2. Antenna Input Impedance
3.3. Surface Current Distribution and Parametric Study
3.4. Radiation Pattern of the Antenna
3.5. Influence of Bending on Antenna Performance
3.6. Antenna Behaviour in Proximity to the Human Body
3.7. SAR Calculation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sugiyama, H.; Goto, H.; Iwasaki, H. Wearable Finger Ring Dual Band Antenna Made of Fabric Cloth for BAN Use. In Proceedings of the 2012 Asia Pacific Microwave Conference Proceedings, Kaohsiung, Taiwan, 4–7 December 2012. [Google Scholar]
- Goto, H.; Iwasaki, H. A low profile wideband monopole antenna with double finger ring for BAN. In Proceedings of the 2011 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, Torino, Italy, 12–16 September 2011. [Google Scholar]
- Cihangir, A.; Luxey, C.; Jacquemod, G.; Pilard, R.; Gianesello, F.; Whittow, W.G.; Panagamuwa, C.J. Investigation of the effect of metallic frames on 4G eyewear antennas. In Proceedings of the 2014 Loughbrgh Antennas and Propagation Conference, Loughborough, UK, 10–11 November 2014. [Google Scholar]
- Su, S.W.; Hsieh, Y.T. Integrated Metal-Frame Antenna for Smartwatch Wearable Device. IEEE Trans. Antennas Propag. 2015, 63, 3301–3305. [Google Scholar] [CrossRef]
- Hong, W.; Lim, S.; Ko, S.; Kim, Y.G. Optically Invisible Antenna Integrated Within an OLED Touch Display Panel for IoT Applications. IEEE Trans. Antennas Propag. 2017, 65, 3750–3755. [Google Scholar] [CrossRef]
- Ashyap, A.Y.I.; Abidin, Z.Z.; Dahlan, S.H.; Majid, H.A.; Seman, F.C. A Compact Wearable Antenna Using EBG for Smart-watch Applications. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018. [Google Scholar]
- Huang, H.S.; Su, H.L.; Chen, S.L. Multiband antennas for GPS/GSM1800/Bluetooth/Wi-Fi smart watch applications. In Proceedings of the 2017 IEEE International Conference on Computational Electromagnetics (ICCEM), Kumamoto, Japan, 8–10 March 2017. [Google Scholar]
- Cheng, C.M.; Chen, W.S.; Lin, G.Q.; Chen, H.M. Four antennas on smart watch for GPS/UMTS/ WLAN MIMO application. In Proceedings of the 2017 IEEE International Conference on Computational Electromagnetics (ICCEM), Kumamoto, Japan, 8–10 March 2017. [Google Scholar]
- Salman, L.K.H.; Talbi, L. Dual Band G-shape wearable cuff button antenna for ISM bands applications. In Proceedings of the 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, ON, Canada, 11–17 July 2010. [Google Scholar]
- Sreelakshmy, R.; Vairavel, G. Novel cuff button antenna for dual-band applications. ICT Express 2018, 5, 26–30. [Google Scholar] [CrossRef]
- Chen, S.J.; Kaufmann, T.; Ranasinghe, D.C.; Fumeaux, C. A Modular Textile Antenna Design Using Snap-on Buttons for Wearable Applications. IEEE Trans. Antennas Propag. 2016, 64, 894–903. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.C.; Azeez, H.I.; Wu, C.K.; Chen, W.S. Design of a fully textile dualband patch antenna using denim fabric. In Proceedings of the 2017 IEEE International Conference on Computational Electromagnetics (ICCEM), Kumamoto, Japan, 8–10 March 2017. [Google Scholar]
- Singh, N.K.; Singh, V.K.; Naresh, B. Textile Antenna for Microwave Wireless Power Transmission. Procedia Comput. Sci. 2016, 85, 856–861. [Google Scholar] [CrossRef] [Green Version]
- Sreelakshmy, R.; Ashok Kumar, S.; Shanmuganantham, T. A wearable type embroidered logo antenna at ISM band for military applications. Microw. Opt. Technol. Lett. 2017, 59, 2159–2163. [Google Scholar] [CrossRef]
- Corchia, L.; Monti, G.; Benedetto, E.D.; Tarricone, L. Wearable Antennas for Remote Health Care Monitoring Systems. Int. J. Antennas Propag. 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Kanaparthi, S.; Sekhar, V.R.; Badhulika, S. Flexible, eco-friendly and highly sensitive paper antenna based electromechanical sensor for wireless human motion detection and structural health monitoring. Extrem. Mech. Lett. 2016, 9, 324–330. [Google Scholar] [CrossRef]
- Affendi, N.A.M.; Alias, N.A.L.; Razali, N.M.; Awang, Z.; Samsuri, A. Flexible antennas using a new material. In Proceedings of the 2014 Asia-Pacific Microwave Conference, Sendai, Japan, 4–7 November 2014. [Google Scholar]
- Trajkovikj, J.; Zurcher, J.F.; Skrivervik, A.K. Soft and flexible antennas on permittivity adjustable PDMS substrates. In Proceedings of the 2012 Loughborough Antennas & Propagation Conference, Loughborough, UK, 12–13 November 2012. [Google Scholar]
- Rahman, A.; Islam, M.T.; Singh, M.J.; Kibria, S.; Akhtaruzzaman, M. Electromagnetic Performances Analysis of an Ultra-wideband and Flexible Material Antenna in Microwave Breast Imaging: To Implement A Wearable Medical Bra. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef]
- Porter, E.; Bahrami, H.; Santorelli, A.; Gosselin, B.; Rusch, L.A.; Popovic, M. A Wearable Microwave Antenna Array for Time-Domain Breast Tumor Screening. IEEE Trans. Med. Imaging 2016, 35, 1501–1509. [Google Scholar] [CrossRef]
- Curto, S.; Prakash, P. Design of a compact antenna with flared groundplane for a wearable breast hyperthermia system. Int. J. Hyperth. 2015, 31, 726–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, S.; Agarwal, M.; Hemati, A.; Ghane, P.; Varahramyan, K. Breast tumour detection by flexible wearable antenna system. Int. J. Comput. Aided Eng. Technol. 2012, 4, 499–516. [Google Scholar] [CrossRef]
- Guay, P.; Gorgutsa, S.; Larochelle, S.; Messaddeq, Y. Wearable contactless respiration sensor based on multi-material fibers integrated into textile. Sensors 2017, 17, 1050. [Google Scholar] [CrossRef] [PubMed]
- Othman, N.; Samsuri, N.A.; Rahim, M.K.A.; Kamardin, K. Design and analysis of flexible bow-tie antenna for medical application. J. Electr. Eng. 2017, 16, 17–21. [Google Scholar]
- Thalmann, T.; Popović, Z.; Notaros, B.M.; Mosig, J.R. Investigation and design of a multi-band wearable antenna. In Proceedings of the 2009 3rd European Conference on Antennas and Propagation, Berlin, Germany, 23–27 March 2009. [Google Scholar]
- Zeouga, K.; Osman, L.; Gharsallah, A.; Gupta, B. Truncated patch antenna on jute textile for wireless power transmission at 2.45 GHz. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 301–305. [Google Scholar] [CrossRef]
- Gupta, N.; Singh, V.K.; Ali, Z.; Ahirwar, J. Stacked Textile Antenna for Multi Band Application Using Foam Substrate. Procedia Comput. Sci. 2016, 85, 871–877. [Google Scholar] [CrossRef] [Green Version]
- Hertleer, C.; Rogier, H.; Vallozzi, L.; Van, L.L. A textile antenna for off-body communication integrated into protective clothing for firefighters. IEEE Trans. Antennas Propag. 2009, 57, 919–925. [Google Scholar] [CrossRef]
- Azeez, H.I.; Chen, W.S.; Wu, C.K.; Cheng, C.M.; Yang, H.C. A simple resonance method to investigate dielectric constant of low loss substrates for smart clothing. Sens. Mater. 2018, 30, 595–608. [Google Scholar] [CrossRef]
- Ouyang, Y.; Chappell, W.J. High frequency properties of electro-textiles for wearable antenna applications. IEEE Trans. Antennas Propag. 2008, 56, 381–389. [Google Scholar] [CrossRef]
- Ivsic, B.; Bonefacic, D. Implementation of conductive yarn into wearable textile antennas. In Proceedings of the 2014 24th International Conference Radioelektronika, Bratislava, Slovakia, 15–16 April 2014. [Google Scholar]
- Kiourti, A.; Lee, C.; Volakis, J.L. Fabrication of Textile Antennas and Circuits with 0.1 mm Precision. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 151–153. [Google Scholar] [CrossRef]
- Chauraya, A.; Whittow, W.G.; Vardaxoglou, J.C.; Li, Y.; Torah, R.; Yang, K.; Beeby, F.; Tudor, J. Inkjet printed dipole antennas on textiles for wearable communications. IET Microw. Antennas Propag. 2013, 7, 760–767. [Google Scholar] [CrossRef] [Green Version]
- Cook, B.S.; Shamim, A. Utilizing wideband AMC structures for high-gain inkjet-printed antennas on lossy paper substrate. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 76–79. [Google Scholar] [CrossRef]
- Chahat, N.; Zhadobov, M.; Sauleau, R.; Ito, K. A compact UWB antenna for on-body applications. IEEE Trans. Antennas Propag. 2011, 59, 1123–1131. [Google Scholar] [CrossRef]
- Mandal, D.; Pattnaik, S.S. Wide CPW-Fed Multiband Wearable Monopole Antenna with Extended Grounds for GSM/WLAN/WiMAX Applications. Int. J. Antennas Propag. 2019, 2019, 1–15. [Google Scholar] [CrossRef]
- Mandal, D.; Pattnaik, S.S. Quad-Band Wearable Slot Antenna With Low Sar Values for 1.8 Ghz Dcs, 2.4 Ghz Wlan and 3.6/5.5 GHz Wimax Applications. Prog. Electromagn. Res. B 2018, 81, 163–182. [Google Scholar] [CrossRef]
- Casula, G.; Montisci, G. A Design Rule to Reduce the Human Body Effect on Wearable PIFA Antennas. Electronics 2019, 8, 244. [Google Scholar] [CrossRef]
- Vatankhah Varnoosfaderani, M.; Thiel, D.V.; Lu, J. A Wideband Slot Antenna in a Box for Wearable Sensor Nodes. IEEE Antennas Wirel. Propag. Lett. 2015, 1225, 494–1497. [Google Scholar] [CrossRef]
Parameter | Value (mm) | Parameter | Value (mm) | Parameter | Value (mm) | Parameter | Value (mm) | Parameter | Value (mm) |
---|---|---|---|---|---|---|---|---|---|
L1 | 40 | L6 | 5.5 | L11 | 15 | W3 | 16 | W8 | 30 |
L2 | 9 | L7 | 36 | L12 | 12 | W4 | 6 | W9 | 2 |
L3 | 12 | L8 | 14 | L, W | 80 | W5 | 1.5 | W10 | 12 |
L4 | 5 | L9 | 12 | W1 | 50 | W6 | 1 | W11 | 11 |
L5 | 25.5 | L10 | 10 | W2 | 15 | W7 | 62 | W12 | 1 |
Centre Frequency (GHz) | Free Space Simulated Gain (dBi) | On-Body Simulated Gain (dB) | Free Space Measured Gain (dB) | Free Space Simulated Rad. Eff. (%) | On-Body Simulated Rad. Eff. (%) | Free Space Measured Rad. Eff. (%) |
---|---|---|---|---|---|---|
2.45 | 2.13 | −12 | 1.26 | 79 | 2.43 | 40 |
5.25 | 6.13 | 4.5 | 2.33 | 84 | 21.6 | 45.3 |
5.75 | 3.8 | 0.6 | 2.64 | 79 | 11.3 | 39.7 |
Centre Frequency (GHz) | Incident Power (mW) | ||||
---|---|---|---|---|---|
25 | 50 | 75 | 100 | 250 | |
2.45 | 0.4114 | 0.8229 | 1.234 | 1.65 | 4.11 |
5.25 | 0.398 | 0.7959 | 1.19 | 1.59 | 3.98 |
5.75 | 0.428 | 0.8561 | 1.28 | 1.71 | 4.28 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azeez, H.I.; Yang, H.-C.; Chen, W.-S. Wearable Triband E-Shaped Dipole Antenna with Low SAR for IoT Applications. Electronics 2019, 8, 665. https://doi.org/10.3390/electronics8060665
Azeez HI, Yang H-C, Chen W-S. Wearable Triband E-Shaped Dipole Antenna with Low SAR for IoT Applications. Electronics. 2019; 8(6):665. https://doi.org/10.3390/electronics8060665
Chicago/Turabian StyleAzeez, Hemin Ismael, Hung-Chi Yang, and Wen-Shan Chen. 2019. "Wearable Triband E-Shaped Dipole Antenna with Low SAR for IoT Applications" Electronics 8, no. 6: 665. https://doi.org/10.3390/electronics8060665
APA StyleAzeez, H. I., Yang, H.-C., & Chen, W.-S. (2019). Wearable Triband E-Shaped Dipole Antenna with Low SAR for IoT Applications. Electronics, 8(6), 665. https://doi.org/10.3390/electronics8060665