Individual Behavior Modeling with Sensors Using Process Mining
Abstract
:1. Introduction
2. Materials and Methods
2.1. Indoor Location Systems
2.2. Process Mining and Clustering
2.3. Calendar Views
3. Results
3.1. Patient Data Information
3.2. Patient Individual Behavior Models
3.2.1. Patient 18
3.2.2. Patient 10
3.2.3. Patient 20
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Zhang, D.; Wang, Z.; Yu, Z.; Zhou, X. Opportunistic IoT: Exploring the harmonious interaction between human and the internet of things. J. Netw. Comput. Appl. 2013, 36, 1531–1539. [Google Scholar] [CrossRef]
- Riley, W.T.; Nilsen, W.J.; Manolio, T.A.; Masys, D.R.; Lauer, M. News from the NIH: Potential contributions of the behavioral and social sciences to the precision medicine initiative. Transl. Behav. Med. 2015, 5, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Bayles, K.A.; Kim, E.S.; Azuma, T.; Chapman, S.B.; Cleary, S.; Hopper, T.; Mahendra, N.; McKnight, P.; Rackley, A.; Tomoeda, C.; et al. Developing evidenced-based practice guidelines for speech-language pathologists serving individuals with Alzheimer’s dementia. J. Med. Speech Lang. Pathol. 2005, 13, xiii–xxv. [Google Scholar]
- Santacruz, K.S.; Swagerty, D. Early diagnosis of dementia. Am. Fam. Physician 2001, 63, 703–713. [Google Scholar]
- Ajzen, I. Attitudes, Personality, and Behavior; McGraw-Hill Education: Berkshire, UK, 2005. [Google Scholar]
- Sanchez-Calzon, A.B.; Meneu, T.; Traver, V. Semantic Technologies for the Modelling of Human Behaviour from a Psychosocial View. In Semantic Interoperability: Issues, Solutions, and Challenges; River Publishers: Roma, Italy, 2012; p. 49. [Google Scholar]
- Alland, A. Evolution and Human Behaviour: An Introduction to Darwinian Anthropology; Routledge: London, UK, 2012. [Google Scholar]
- Tsymbal, A. The problem of concept drift: Definitions and related work. Comput. Sci. Dep. Trinity Coll. Dublin 2004, 106, 58. [Google Scholar]
- Chen, X.W.; Lin, X. Big data deep learning: Challenges and perspectives. IEEE Access 2014, 2, 514–525. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Index, C.V.N. Cisco Visual Networking Index: Forecast and Methodology 2015–2020; White Paper; CISCO: San Francisco, CA, USA, 2015. [Google Scholar]
- Mamlin, B.W.; Tierney, W.M. The promise of information and communication technology in healthcare: Extracting value from the chaos. Am. J. Med. Sci. 2016, 351, 59–68. [Google Scholar] [CrossRef]
- Wichert, R.; Eberhardt, B. Ambient Assisted Living: 4. AAL-Kongress 2011 Berlin, Germany, January 25–26, 2011; Springer: London, UK, 2011. [Google Scholar]
- Bayo-Monton, J.L.; Martinez-Millana, A.; Han, W.; Fernandez-Llatas, C.; Sun, Y.; Traver, V. Wearable Sensors Integrated with Internet of Things for Advancing eHealth Care. Sensors 2018, 18, 1851. [Google Scholar] [CrossRef]
- Jameson, J.L.; Longo, D.L. Precision medicine—Personalized, problematic, and promising. Obstet. Gynecol. Surv. 2015, 70, 612–614. [Google Scholar] [CrossRef]
- Chaaraoui, A.A.; Climent-Pérez, P.; Flórez-Revuelta, F. A review on vision techniques applied to human behaviour analysis for ambient-assisted living. Expert Syst. Appl. 2012, 39, 10873–10888. [Google Scholar] [CrossRef]
- Botia, J.A.; Villa, A.; Palma, J. Ambient assisted living system for in-home monitoring of healthy independent elders. Expert Syst. Appl. 2012, 39, 8136–8148. [Google Scholar] [CrossRef]
- Bamis, A.; Lymberopoulos, D.; Teixeira, T.; Savvides, A. The BehaviorScope framework for enabling ambient assisted living. Pers. Ubiquitous Comput. 2010, 14, 473–487. [Google Scholar] [CrossRef]
- Dogan, O.; Bayo-Monton, J.L.; Fernandez-Llatas, C.; Oztaysi, B. Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application. Sensors 2019, 19, 557. [Google Scholar] [CrossRef]
- Dogan, O.; Gurcan, O.F.; Oztaysi, B.; Gokdere, U. Analysis of Frequent Visitor Patterns in a Shopping Mall. In Industrial Engineering in the Big Data Era; Springer: London, UK, 2019; pp. 217–227. [Google Scholar]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Fernández-Llatas, C.; Benedi, J.M.; García-Gómez, J.; Traver, V. Process mining for individualized behavior modeling using wireless tracking in nursing homes. Sensors 2013, 13, 15434–15451. [Google Scholar] [CrossRef]
- Martinez-Millana, A.; Lizondo, A.; Gatta, R.; Vera, S.; Salcedo, V.T.; Fernandez-Llatas, C. Process Mining Dashboard in Operating Rooms: Analysis of Staff Expectations with Analytic Hierarchy Process. Int. J. Environ. Res. Public Health 2019, 16, 199. [Google Scholar] [CrossRef]
- Bogner, M.S. Human Error in Medicine; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Van der Aalst, W.M. Process Mining: Data Science in Action; Springer: London, UK, 2016. [Google Scholar]
- Van Der Aalst, W.; Adriansyah, A.; De Medeiros, A.K.A.; Arcieri, F.; Baier, T.; Blickle, T.; Bose, J.C.; Van Den Brand, P.; Brandtjen, R.; Buijs, J.; et al. Process mining manifesto. In International Conference on Business Process Management; Springer: London, UK, 2011; pp. 169–194. [Google Scholar]
- Fernandez-Llatas, C.; Lizondo, A.; Monton, E.; Benedi, J.M.; Traver, V. Process mining methodology for health process tracking using real-time indoor location systems. Sensors 2015, 15, 29821–29840. [Google Scholar] [CrossRef]
- Mshali, H.; Lemlouma, T.; Moloney, M.; Magoni, D. A survey on health monitoring systems for health smart homes. Int. J. Ind. Ergon. 2018, 66, 26–56. [Google Scholar] [CrossRef] [Green Version]
- Ma’arif, M.R. Revealing daily human activity pattern using process mining approach. In Proceedings of the 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Yogyakarta, Indonesia, 19–21 September 2017; pp. 1–5. [Google Scholar]
- Nakatumba, J.; van der Aalst, W.M. Analyzing resource behavior using process mining. In International Conference on Business Process Management; Springer: London, UK, 2009; pp. 69–80. [Google Scholar]
- Maruster, L.; Faber, N.R.; Jorna, R.J.; van Haren, R.J. A Process Mining Approach to Analyse User Behaviour. In WEBIST (2); Academic Publishers: Dordrecht, The Netherlands, 2008; pp. 208–214. [Google Scholar]
- Kim, E.; Helal, S.; Cook, D. Human activity recognition and pattern discovery. IEEE Pervasive Comput. Comput. Soc./IEEE Commun. Soc. 2010, 9, 48. [Google Scholar] [CrossRef]
- Dogan, O. Process Mining for Check-up Process Analysis. IIOBJ 2018, 9, 56–61. [Google Scholar]
- Stevenson, A.; Cordy, J.R. Grammatical inference in software engineering: An overview of the state of the art. In International Conference on Software Language Engineering; Springer: London, UK, 2012; pp. 204–223. [Google Scholar]
- Fernández-Llatas, C.; Meneu, T.; Benedi, J.M.; Traver, V. Activity-based process mining for clinical pathways computer aided design. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 6178–6181. [Google Scholar]
- Fernandez-Llatas, C.; Pileggi, S.F.; Traver, V.; Benedi, J.M. Timed parallel automaton: A mathematical tool for defining highly expressive formal workflows. In Proceedings of the 2011 Fifth Asia Modelling Symposium, Kuala Lumpur, Malaysia, 24–26 May 2011; pp. 56–61. [Google Scholar]
- Li, N.; Becerik-Gerber, B. Performance-based evaluation of RFID-based indoor location sensing solutions for the built environment. Adv. Eng. Inform. 2011, 25, 535–546. [Google Scholar] [CrossRef]
- Rida, M.E.; Liu, F.; Jadi, Y.; Algawhari, A.A.A.; Askourih, A. Indoor location position based on bluetooth signal strength. In Proceedings of the 2015 2nd International Conference on Information Science and Control Engineering, Shanghai, China, 24–26 April 2015; pp. 769–773. [Google Scholar]
- Fang, S.H.; Wang, C.H.; Huang, T.Y.; Yang, C.H.; Chen, Y.S. An enhanced ZigBee indoor positioning system with an ensemble approach. IEEE Commun. Lett. 2012, 16, 564–567. [Google Scholar] [CrossRef]
- Álvarez-García, J.A.; Barsocchi, P.; Chessa, S.; Salvi, D. Evaluation of localization and activity recognition systems for ambient assisted living: The experience of the 2012 EvAAL competition. J. Ambient Intell. Smart Environ. 2013, 5, 119–132. [Google Scholar] [Green Version]
- Byrne, C.; Collier, R.; O’Hare, G. A Review and Classification of Assisted Living Systems. Information 2018, 9, 182. [Google Scholar] [CrossRef]
- Manzoor, A.; Truong, H.L.; Calatroni, A.; Roggen, D.; Bouroche, M.; Clarke, S.; Cahill, V.; Tröster, G.; Dustdar, S. Analyzing the impact of different action primitives in designing high-level human activity recognition systems. J. Ambient Intell. Smart Environ. 2013, 5, 443–461. [Google Scholar]
- Lee, S.; Ha, K.N.; Lee, K.C. A pyroelectric infrared sensor-based indoor location-aware system for the smart home. IEEE Trans. Consum. Electron. 2006, 52, 1311–1317. [Google Scholar] [CrossRef]
- Van Dongen, B.F.; de Medeiros, A.K.A.; Verbeek, H.; Weijters, A.; Van Der Aalst, W.M. The ProM framework: A new era in process mining tool support. In International Conference on Application and Theory of Petri Nets; Springer: London, UK, 2005; pp. 444–454. [Google Scholar]
- Conca, T.; Saint-Pierre, C.; Herskovic, V.; Sepúlveda, M.; Capurro, D.; Prieto, F.; Fernandez-Llatas, C. Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining. J. Med. Internet Res. 2018, 20, e127. [Google Scholar] [CrossRef] [Green Version]
- Günther, C.W.; Rozinat, A. Disco: Discover Your Processes. BPM 2012, 940, 40–44. [Google Scholar]
- Vidal, E.; Prieto, N.; Sanchis, E.; Rulot, H. Application of the Error Correcting Grammatical Inference Method (ECGI) to Multi-speaker isolated word recognition. In Recent Advances in Speech Understanding and Dialog Systems; Springer: London, UK, 1988; pp. 317–321. [Google Scholar]
- Dogan, O. Heuristic Approaches in Clustering Problems. In Handbook of Research on Applied Optimization Methodologies in Manufacturing Systems; IGI Global: Hershey, PA, USA, 2018; pp. 107–124. [Google Scholar]
- Lee, J.; Bagheri, B.; Kao, H.A. A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Oppitz, M.; Tomsu, P. Internet of Things. In Inventing the Cloud Century; Springer: London, UK, 2018; pp. 435–469. [Google Scholar]
- Dogan, O.; Gurcan, O.F. Applications of Big Data and Green IoT Enabling Technologies for Smart Cities. In Handbook of Research on Big Data and the IoT; IGI Global: Hershey, PA, USA, 2018; pp. 22–41. [Google Scholar]
- Salkin, C.; Oner, M.; Ustundag, A.; Cevikcan, E. A conceptual framework for Industry 4.0. In Industry 4.0: Managing The Digital Transformation; Springer: London, UK, 2018; pp. 3–23. [Google Scholar]
Study | Advantages | Limitations |
---|---|---|
[30] | A graphical insight about the human activity on daily basis | Only most frequent activity sequences are examined |
[31] | The relationship between workload and service time is investigated with regression analysis | The study needs more realistic by adequately modeling resources based on empirical data. Simulation models, which is the method used in the study, are often based on incorrect assumptions |
[20] | An overview of gender behaviors in different months concerning followed similar paths | Data quality issues in the preprocessing stage Only most frequent followed paths are examined |
[23] | The algorithm allows for the inference of parallel activities and sequences | The study is limited by the number of cases available for observation The study needs to investigate data with more information about the user’s daily actions |
[32] | Support the redesigning and personalization of decision support systems | The study needs detailed navigation behavior of different target groups |
ID | Avg. Dist. | Num. Days | ID | Avg. Dist. | Num. Days | ID | Avg. Dist. | Num. Days |
---|---|---|---|---|---|---|---|---|
1 | 0.23 | 304 | 10 | 0.33 | 205 | 19 | 0.12 | 269 |
2 | 0.34 | 332 | 11 | 0.21 | 87 | 20 | 0.42 | 283 |
3 | 0.26 | 183 | 12 | 0.26 | 275 | 21 | 0.30 | 267 |
4 | 0.37 | 70 | 13 | 0.28 | 174 | 22 | 0.15 | 254 |
5 | 0.29 | 225 | 14 | 0.27 | 286 | 23 | 0.38 | 185 |
6 | 0.23 | 309 | 15 | 0.21 | 262 | 24 | 0.18 | 190 |
7 | 0.37 | 284 | 16 | 0.27 | 68 | 25 | 0.34 | 127 |
8 | 0.27 | 265 | 17 | 0.28 | 278 | |||
9 | 0.24 | 302 | 18 | 0.14 | 285 |
Advantages |
Readable and understandable results by not only experts but also non-experts |
Process mining application as a novel solution for human behavior analysis on daily basis |
Discovering similar behaviors from human indoor paths by clustering analysis (workflow model) |
Visualization of human behaviors and activity patterns to understand behavioral changes (calendar view) |
Dealing with infrequent behaviors which mainly ignored but may include critical details in healthcare |
Limitations |
Difficulty in understanding human behaviors when people have mental health or syndrome problems |
Need for more clustering experiments of the clustering models |
Need deep data processing to remove errors and assess data quality |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dogan, O.; Martinez-Millana, A.; Rojas, E.; Sepúlveda, M.; Munoz-Gama, J.; Traver, V.; Fernandez-Llatas, C. Individual Behavior Modeling with Sensors Using Process Mining. Electronics 2019, 8, 766. https://doi.org/10.3390/electronics8070766
Dogan O, Martinez-Millana A, Rojas E, Sepúlveda M, Munoz-Gama J, Traver V, Fernandez-Llatas C. Individual Behavior Modeling with Sensors Using Process Mining. Electronics. 2019; 8(7):766. https://doi.org/10.3390/electronics8070766
Chicago/Turabian StyleDogan, Onur, Antonio Martinez-Millana, Eric Rojas, Marcos Sepúlveda, Jorge Munoz-Gama, Vicente Traver, and Carlos Fernandez-Llatas. 2019. "Individual Behavior Modeling with Sensors Using Process Mining" Electronics 8, no. 7: 766. https://doi.org/10.3390/electronics8070766