A Low-Noise Chopper Amplifier with Offset and Low-Frequency Noise Compensation DC Servo Loop
Abstract
:1. Introduction
2. Design and Analysis of the Proposed Structure
2.1. VLT Switched-Capacitor Integrator with Offset and Low-Frequency Noise Compensation
2.2. System Structure of Chopper Amplifier
2.3. Design of a Current Reuse Amplifier and a High-Slew-Rate Amplifier
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Webster, J.G. Medical Instrumentation: Application and Design; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Ng, K.A.; Greenwald, E.; Xu, Y.P.; Thakor, N.V. Implantable neurotechnologies: A review of integrated circuit neural amplifiers. Med. Biol. Eng. 2016, 54, 45–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, R.R.; Charles, C. A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid State Circuits 2003, 38, 958–965. [Google Scholar] [CrossRef]
- Denison, T.; Consoer, K.; Santa, W.; Avestruz, A.-T.; Cooley, J.; Kelly, A. A 2 μW 100 nV/√Hz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J. Solid State Circuits 2007, 42, 2934–2945. [Google Scholar] [CrossRef]
- Chandrakumar, H.; Marković, D. A high dynamic-range neural recording chopper amplifier for simultaneous neural recording and stimulation. IEEE J. Solid State Circuits 2017, 52, 645–656. [Google Scholar] [CrossRef]
- Fan, Q.; Sebastiano, F.; Huijsing, J.H.; Makinwa, K.A.A. A 1.8 μW 60 nV/√Hz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes. IEEE J. Solid State Circuits 2011, 46, 1534–1543. [Google Scholar] [CrossRef]
- Wu, R.; Makinwa, K.A.A.; Huijsing, J.H. A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple-reduction loop. IEEE J. Solid State Circuits 2009, 44, 3232–3243. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Lin, Q.; Ding, M.; Li, Y.; van Hoof, C.; Serdijn, W.; van Helleputte, N. A 0.6 V 3.8 μW ECG/bio-impedance monitoring IC for disposable health patch in 40 nm CMOS. In Proceedings of the 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, USA, 8–11 April 2018; pp. 1–4. [Google Scholar]
- Li, Q.; Wang, X.; Liu, Y. A 60nV/√Hz <0.01%-THD ±200 mV-DC-Rejection Bio-Sensing Chopper Amplifier with Noise-Nonlinearity-Cancelling Loop. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 215–219. [Google Scholar] [CrossRef]
- Luo, D.; Zhang, M.; Wang, Z. A Low-Noise Chopper Amplifier Designed for Multi-Channel Neural Signal Acquisition. IEEE J. Solid State Circuits 2019, 54, 2255–2265. [Google Scholar] [CrossRef]
- Enz, C.C.; Temes, G.C. Circuit techniques for reducing the effects of op-amp imperfections: Autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE 1996, 84, 1584–1614. [Google Scholar] [CrossRef] [Green Version]
- Radev, N.A.; Ivanov, K.P. Area-efficient gain- and offset-compensated very-large-time-constant SC integrator. Electron. Lett. 2000, 36, 394–396. [Google Scholar] [CrossRef]
- Ivanisevic, N.; Rodriguez, S.; Rusu, A. Area-Efficient Switched-Capacitor Integrator with Flicker Noise Cancellation. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–4. [Google Scholar]
- Xu, J.; Fan, Q.; Huijsing, J.H.; van Hoof, C.; Yazicioglu, R.F.; Makinwa, K.A.A. Measurement and Analysis of Current Noise in Chopper Amplifiers. IEEE J. Solid State Circuits 2013, 48, 1575–1584. [Google Scholar]
- Wang, X.; Shi, Z.; Xu, B. Noise optimization of switched capacitor integrator. In Proceedings of the 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Singapore, 1–4 June 2015; pp. 519–522. [Google Scholar]
- Chandrakumar, H.; Marković, D. A simple area-efficient ripple-rejection technique for chopped biosignal amplifiers. IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 189–193. [Google Scholar] [CrossRef]
- Khatavkar, P.; Aniruddhan, S. 432 nW per Channel 130 nV/√Hz ECG Acquisition Front End with. Multifrequency Chopping. IEEE Trans. Large Scale Integr. Vlsi Syst. 2019, 27, 2021–2032. [Google Scholar] [CrossRef]
- Liang, Z.; Li, B.; Wu, Z. A Fully Integrated Chopper IA for Implantable Multichannel EEG Recording Without Impedance Boosting Circuits. In Proceedings of the 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Chengdu, China, 26–30 October 2018; pp. 143–146. [Google Scholar]
- Xu, W.; Wang, T.; Wei, X.; Yue, H.; Wei, B.; Duan, J.; Li, H. Low Noise, High Input Impedance Digital-Analog Hybrid Offset Suppression Amplifier for Wearable Dry Electrode ECG Monitoring. Electronics 2020, 9, 165. [Google Scholar]
Parameter | [5] | [10] | [17] | [18] | [19] | This Work |
---|---|---|---|---|---|---|
Technology | 40 nm | 65 nm | 130 nm | 180 nm | 180 nm | 180 nm |
Gain (dB) | 26 | 40 | 40 | 40–54 | 46 | 31.7 |
Bandwidth (Hz) | 5 k | 500 | 100 | 5 k | 500 | 9 k |
Input-referred noise (µVrms) | LFP: 2 1 AP: 7 2 | LFP: 6.7 1 | AP: 2.62 2 | 1–100 Hz: 1.06 1–5 kHz: 5.23 | AP: 1.9 2 | LFP: 0.72 1 AP: 3.46 2 |
NEF | LFP: 7 1 AP: 4.9 2 | LFP: 14 1 | AP: 6.05 2 | 1–100 Hz: 3.31 1–5 kHz: 2.31 | AP: 11.4 2 | LFP: 0.43 1 AP: 2.08 2 |
CMRR (dB) | >78 | >110 | 98 | 97 (1 kHz) | 96 (50 Hz) | >85 |
PSRR (dB) | - | >100 | - | - | - | >87 |
Power/Ch (µW) | 2 | 1.8 | 0.432 | 0.792 | 19.8 | 3.96 |
Area/ch (mm2) | 0.071 | 0.2 | 0.68 | 0.15 | 0.36 | 0.244 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhou, Z.; Zhou, Y.; Li, W.; Wang, Z. A Low-Noise Chopper Amplifier with Offset and Low-Frequency Noise Compensation DC Servo Loop. Electronics 2020, 9, 1797. https://doi.org/10.3390/electronics9111797
Liu Y, Zhou Z, Zhou Y, Li W, Wang Z. A Low-Noise Chopper Amplifier with Offset and Low-Frequency Noise Compensation DC Servo Loop. Electronics. 2020; 9(11):1797. https://doi.org/10.3390/electronics9111797
Chicago/Turabian StyleLiu, Yuekai, Zhijun Zhou, Yixin Zhou, Wenyuan Li, and Zhigong Wang. 2020. "A Low-Noise Chopper Amplifier with Offset and Low-Frequency Noise Compensation DC Servo Loop" Electronics 9, no. 11: 1797. https://doi.org/10.3390/electronics9111797
APA StyleLiu, Y., Zhou, Z., Zhou, Y., Li, W., & Wang, Z. (2020). A Low-Noise Chopper Amplifier with Offset and Low-Frequency Noise Compensation DC Servo Loop. Electronics, 9(11), 1797. https://doi.org/10.3390/electronics9111797