Analysis and Design of a Sine Wave Filter for GaN-Based Low-Voltage Variable Frequency Drives
Abstract
:1. Introduction
2. Sine Wave Filter in GaN-Based VFD Applications
2.1. Effect of High dv/dt on Motor Drive System
2.2. Design of Sine Wave Filter
3. Experimental Results
3.1. Motor Terminal Voltage
3.2. Common Mode Current
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jones, E.A.; Wang, F.F.; Costinett, D. Review of commercial GaN power devices and GaN-based converter design challenges. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 707–719. [Google Scholar] [CrossRef]
- Chen, K.J.; Häberlen, O.; Lidow, A.; Tsai, C.l.; Ueda, T.; Uemoto, Y.; Wu, Y. GaN-on-Si power technology: Devices and applications. IEEE Trans. Elect. Devices 2017, 64, 779–795. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Barzegaran, M.R.; Mohammed, O.A. EMI reduction of PMSM drive through matrix converter controlled with wide-bandgap switches. IEEE Trans. Mag. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Metidji, B.; Taib, N.; Baghli, L.; Rekioua, T.; Bacha, S. Phase current reconstruction using a single current sensor of three-phase AC motors fed by SVM-controlled direct matrix converters. IEEE Trans. Ind. Electron. 2012, 60, 5497–5505. [Google Scholar] [CrossRef]
- Siami, M.; Khaburi, D.A.; Rivera, M.; Rodríguez, J. A computationally efficient lookup table based FCS-MPC for PMSM drives fed by matrix converters. IEEE Trans. Ind. Electron. 2017, 64, 7645–7654. [Google Scholar] [CrossRef]
- Xia, C.; Zhao, J.; Yan, Y.; Shi, T. A novel direct torque control of matrix converter-fed PMSM drives using duty cycle control for torque ripple reduction. IEEE Trans. Ind. Electron. 2014, 61, 2700–2713. [Google Scholar] [CrossRef]
- Siami, M.; Khaburi, D.A.; Rodríguez, J. Simplified finite control set-model predictive control for matrix converter-fed PMSM drives. IEEE Trans. Power Electron. 2017, 33, 2438–2446. [Google Scholar] [CrossRef]
- Erdman, J.M.; Kerkman, R.J.; Schlegel, D.W.; Skibinski, G.L. Effect of PWM inverters on AC motor bearing currents and shaft voltages. IEEE Trans. Ind. Appl. 1996, 32, 250–259. [Google Scholar] [CrossRef]
- Bonnett, A.H. A comparison between insulation systems available for PWM-inverter-fed motors. IEEE Trans. Ind. Appl. 1997, 33, 1331–1341. [Google Scholar] [CrossRef]
- Haq, S.U.; Jayaram, S.H.; Cherney, E.A. Insulation problems in medium-voltage stator coils under fast repetitive voltage pulses. IEEE Trans. Ind. Appl. 2008, 44, 1004–1012. [Google Scholar] [CrossRef]
- Martinez, W.; Odawara, S.; Fujisaki, K. Iron loss characteristics evaluation using a high-frequency GaN inverter excitation. IEEE Trans. Magn. 2017, 53, 1–7. [Google Scholar] [CrossRef]
- Chen, S.; Lipo, T.A.; Fitzgerald, D. Modeling of motor bearing currents in PWM inverter drives. IEEE Trans. Ind. Appl. 1996, 32, 1365–1370. [Google Scholar] [CrossRef]
- Chen, S.; Lipo, T.A.; Fitzgerald, D. Source of induction motor bearing currents caused by PWM inverters. IEEE Trans. Energy Conver. 1996, 11, 25–32. [Google Scholar] [CrossRef]
- Akagi, H.; Tamura, S. A passive EMI filter for eliminating both bearing current and ground leakage current from an inverter-driven motor. IEEE Trans. Power Electron. 2006, 21, 1459–1469. [Google Scholar] [CrossRef]
- Robles, E.; Fernandez, M.; Ibarra, E.; Andreu, J.; Kortabarria, I. Mitigation of common mode voltage issues in electric vehicle drive systems by means of an alternative AC-decoupling power converter topology. Energies 2019, 12, 3349. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Liu, R.; Yang, E. Modelling of the bearing breakdown resistance in bearing currents problem of AC motors. Energies 2019, 12, 1121. [Google Scholar] [CrossRef] [Green Version]
- Concari, L.; Barater, D.; Toscani, A.; Concari, C.; Franceschini, G.; Buticchi, G.; Liserre, M.; Zhang, H. Assessment of efficiency and reliability of wide band-gap based H8 inverter in electric vehicle applications. Energies 2019, 12, 1922. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Li, S.; Wu, Y.; Choi, W.; Sarlioglu, B. Comparative analysis on conducted CM EMI emission of motor drives: WBG versus Si devices. IEEE Trans. Ind. Electron. 2017, 64, 8353–8363. [Google Scholar] [CrossRef]
- Akagi, H.; Hasegawa, H.; Doumoto, T. Design and performance of a passive EMI filter for use with a voltage-source PWM inverter having sinusoidal output voltage and zero common-mode voltage. IEEE Trans. Power Electron. 2004, 19, 1069–1076. [Google Scholar] [CrossRef]
- Skibinski, G.L.; Kerkman, R.J.; Schlegel, D. EMI emissions of modern PWM AC drives. IEEE Ind. Appl. Mag. 1999, 5, 47–80. [Google Scholar] [CrossRef]
- Saunders, L.A.; Skibinski, G.L.; Evon, S.T.; Kempkes, D.L. Riding the reflected wave-IGBT drive technology demands new motor and cable considerations. In Proceedings of the 1996 IAS Petroleum and Chemical Industry Technical Conference, Philadelpia, PA, USA, 23–25 September 1996; pp. 75–84. [Google Scholar]
- He, J.; Li, C.; Jassal, A.; Thiagarajan, N.; Zhang, Y.; Prabhakaran, S.; Feliz, C.; Graham, J.E.; Kang, X. Multi-domain design optimization of dv/dt filter for SiC-based three-phase inverters in high-frequency motor-drive applications. IEEE Trans. Ind. Appl. 2019, 55, 5214–5222. [Google Scholar] [CrossRef]
- Schroedermeier, A.; Ludois, D.C. Integration of inductors, capacitors, and damping into bus bars for silicon carbide inverter dv/dt filters. IEEE Trans. Ind. Appl. 2019, 55, 5045–5054. [Google Scholar] [CrossRef]
- Swamy, M.M.; Baumgardner, M.A. New normal mode dv/dt filter with a built-in resistor failure detection circuit. IEEE Trans. Ind. Appl. 2017, 53, 2149–2158. [Google Scholar] [CrossRef]
- Finlayson, P.T. Output filters for PWM drives with induction motors. IEEE Ind. Appl. Mag. 1998, 4, 46–52. [Google Scholar] [CrossRef]
- Swamy, M.M.; Kang, J.K.; Shirabe, K. Power loss, system efficiency, and leakage current comparison between Si IGBT VFD and SiC FET VFD with various filtering options. IEEE Trans. Ind. Appl. 2015, 51, 3858–3866. [Google Scholar] [CrossRef]
- Baek, S.; Cho, Y.; Cho, B.G.; Hong, C. Performance comparison between two-level and three-level SiC-based VFD applications with output filters. IEEE Trans. Ind. Appl. 2019, 55, 4770–4779. [Google Scholar] [CrossRef]
- Mishra, P.; Maheshwari, R. Design, analysis, and impacts of sinusoidal LC filter on pulsewidth modulated inverter fed-induction motor drive. IEEE Trans. Ind. Electron. 2020, 67, 2678–2688. [Google Scholar] [CrossRef]
- Lyu, Z.; Yang, M.; Xu, D.; Shang, S.; Xu, D. Design and research of GaN-based motor drive system with LC output filter. In Proceedings of the 10th International Conference on Power Electronics and ECCE Asia (ICPE ECCE Asia), Busan, Korea, 27–30 May 2019. [Google Scholar]
- International Electrotechnical Commission. IEC TS 60034-18-41 Rotating Electrical Machines-Qualification and Type Tests for Type I Electrical Insulation Systems Used in Rotating Electrical Machines Fed from Voltage Converters; IEC: Geneva, Switzerland, 2007. [Google Scholar]
- Liu, R.; Ma, X.; Ren, X.; Cao, J.; Niu, S. Comparative analysis of bearing current in wind turbine generators. Energies 2018, 11, 1305. [Google Scholar] [CrossRef] [Green Version]
- Magnetics Inductor Design. Available online: https://www.mag-inc.com/Design/Design-Tools/Inductor-Design (accessed on 5 January 2020).
dv/dt Filter | Sine Wave Filter | |
---|---|---|
| | |
Switching frequency | Several kHz | Several tens of kHz |
Output voltage of filter | Voltage pulses | Sinusoidal |
Compliance with motor standard | Limited by cable length | Guaranteed |
Vrated | Peak Voltage | Rise Time | dv/dt |
---|---|---|---|
< 460 V | ≤ 1.6 kV | ≥ 0.1 μs | ≤ 5.2 kV/μs |
460 V <Vrated < 575 V | ≤ 1.8 kV | ≤ 6.5 kV/μs | |
575 V <Vrated < 690 V | ≤ 2.2 kV | ≤ 7.8 kV/μs |
Cable | Motor | |||
---|---|---|---|---|
10 AWG 1 | < 3.7 kW | 93 kW | 373 kW | |
Surge impedance (Ω) | 80 | 2000~5000 | 800 | 400 |
Parameters | Values |
---|---|
Output power | 1 kW |
Input line-to-line voltage | 200 Vrms |
Output line-to-line voltage | 100 Vrms |
Input frequency | 60 Hz |
Output frequency | 0.6 Hz~60 Hz |
Switching frequency | 25 kHz |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, S.; Choi, D.; Bu, H.; Cho, Y. Analysis and Design of a Sine Wave Filter for GaN-Based Low-Voltage Variable Frequency Drives. Electronics 2020, 9, 345. https://doi.org/10.3390/electronics9020345
Baek S, Choi D, Bu H, Cho Y. Analysis and Design of a Sine Wave Filter for GaN-Based Low-Voltage Variable Frequency Drives. Electronics. 2020; 9(2):345. https://doi.org/10.3390/electronics9020345
Chicago/Turabian StyleBaek, Seunghoon, Dongmin Choi, Hanyoung Bu, and Younghoon Cho. 2020. "Analysis and Design of a Sine Wave Filter for GaN-Based Low-Voltage Variable Frequency Drives" Electronics 9, no. 2: 345. https://doi.org/10.3390/electronics9020345
APA StyleBaek, S., Choi, D., Bu, H., & Cho, Y. (2020). Analysis and Design of a Sine Wave Filter for GaN-Based Low-Voltage Variable Frequency Drives. Electronics, 9(2), 345. https://doi.org/10.3390/electronics9020345