An Effective Edge-Assisted Data Collection Approach for Critical Events in the SDWSN-Based Agricultural Internet of Things
Abstract
:1. Introduction
- A software-defined WSN (SDWSN) enabled framework for monitoring event is designed by integrating a software-defined network (SDN) and edge computing into an agricultural IoT data sensing system.
- Based on the proposed framework, an effective data sensing method, which conducts automatic data type selection using mutual information, events categorization, and related data sensing is proposed to realize essential event sensing and reduce the cost of data collection.
- An experimental prototype is designed in an agricultural greenhouse to verify the proposed strategy and compare it with the existing methods.
2. Related Work
2.1. Data Collection in Agriculture
2.2. Software-Defined WSNs
3. Data Collection Framework for Critical Event Combing Edge Computing and SDWSN
3.1. Framework Overview
3.2. Proposed Framework Working Principle
4. Edge-Assisted Effective Data Collection Design
4.1. Sensing Data Type Selection by Exploiting Historical Data
Algorithm 1 Sensing data type selection based on the MI | |
Input: X; k; S | |
Output: G | |
1. | Initialize , |
2. | for, , //for each event |
3. | for //for each data type |
4. | each , calculate . |
5. | if |
6. | , |
7. | Sort in descending order in light of |
8. | until |
9. | , |
10. | for |
11. | each calculate |
12. | if |
13. | , |
14. | until |
15. | |
16. | until i = k |
17. | return |
4.2. Event Identification Based on Edge Computing
Algorithm 2 Event identification method based on the minimum variance | |
Input: G; Output: | |
1. | Initialize , |
2. | for//for each event |
3. | Clean the historical dataset X |
4. | Normalized historical dataset X according to Equations (8) and (9) |
5. | Averaged the normalized dataset |
6. | untili = k |
Randomly select node for routine data sensing | |
7. | Collect sensing data |
8. | for// Calculate an average variance of each event |
9. | |
10. | |
11. | untili = k |
12. | Find the minimum value of VM. |
13. | Identify the event type Ed based on the minimum value of VM. |
14. | returnEd |
4.3. Data Sensing with Time Constraints in SDWSN
Algorithm 3 Sensing method with time constraints based on SDN | |
1. | Initialize Ed, V, ts, |
2. | Adopt covering strategies to determine the sensing node set A |
3. | SDN sever rouse A to prepare for Ed |
4. | According to calculate the number of data types |
5. | |
6. | SDN sever drives A sensing data types |
7. | for //WSN node to collect data |
8. | for //for each data type |
9. | Sensing and collect data from node |
10. | Save the data |
11. | until |
12. | Transmit the data to the cluster head |
13 | until |
14 | Return finish the data collection flag |
5. Experiment and Results
5.1. Experimental Setup
5.2. Results Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ahmed, N.; De, D.; Hussain, I. Internet of Things (IoT) for smart precision agriculture and farming in rural areas. IEEE Internet Things J. 2018, 5, 4890–4899. [Google Scholar] [CrossRef]
- Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A survey on the role of IoT in agriculture for the implementation of smart farming. IEEE Access 2019, 7, 156237–156271. [Google Scholar] [CrossRef]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An overview of internet of things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Roussaki, I.; Kosmides, P.; Routis, G.; Doolin, K.; Pevtschin, V.; Marguglio, A. A Multi-Actor approach to promote the employment of IoT in Agriculture. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6. [Google Scholar]
- Kalatzis, N.; Avgeris, M.; Dechouniotis, D.; Papadakis-Vlachopapadopoulos, K.; Roussaki, I.; Papavassiliou, S. Edge Computing in IoT Ecosystems for UAV-Enabled Early Fire Detection. In Proceedings of the 2018 IEEE International Conference on Smart Computing (SMARTCOMP), Taormina, Italy, 18–20 June 2018; pp. 106–114. [Google Scholar]
- Brewster, C.; Roussaki, I.; Kalatzis, N.; Doolin, K.; Ellis, K. IoT in agriculture: Designing a Europe-wide large-scale pilot. IEEE Commun. Mag. 2017, 55, 26–33. [Google Scholar] [CrossRef]
- Jiang, C.; Cheng, X.; Gao, H.; Zhou, X.; Wan, J. Toward computation offloading in edge computing: A survey. IEEE Access 2019, 7, 131543–131558. [Google Scholar] [CrossRef]
- Dimitriou, K.; Roussaki, I. Location privacy protection in distributed IoT environments based on dynamic sensor node clustering. Sensors 2019, 19, 3022. [Google Scholar] [CrossRef] [Green Version]
- Roopaei, M.; Rad, P.; Choo, K.-K.R. Cloud of things in smart agriculture: Intelligent irrigation monitoring by thermal imaging. IEEE Cloud Comput. 2017, 4, 10–15. [Google Scholar] [CrossRef]
- Chen, J.; Yang, A. Intelligent agriculture and its key technologies based on internet of things architecture. IEEE Access 2019, 7, 77134–77141. [Google Scholar] [CrossRef]
- Spachos, P.; Gregori, S. Integration of wireless sensor networks and smart UAVs for precision viticulture. IEEE Internet Comput. 2019, 23, 8–16. [Google Scholar] [CrossRef]
- Le, T.D.; Tan, D.H. Design and Deploy a Wireless Sensor Network for Precision Agriculture. In Proceedings of the 2015 2nd National Foundation for Science and Technology Development Conference on Information and Computer Science (NICS), Ho Chi Minh City, Vietnam, 16–18 September 2015; pp. 294–299. [Google Scholar]
- Li, X.; Ma, Z.; Chu, X.; Liu, Y. A Cloud-Assisted region monitoring strategy of mobile robot in smart greenhouse. Mob. Inf. Syst. 2019, 2019, 5846232. [Google Scholar] [CrossRef]
- Cambra, C.; Sendra, S.; Lloret, J.; Garcia, L. An IoT Service-Oriented System for Agriculture Monitoring. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar]
- Liu, Y.; Bi, C. The Design of Greenhouse Monitoring System Based on ZigBee WSNs. In Proceedings of the 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 22–23 July 2017; pp. 430–433. [Google Scholar]
- Dong, M.; Ota, K.; Liu, A. RMER: Reliable and Energy-Efficient Data Collection for Large-Scale Wireless Sensor Networks. IEEE Internet Things J. 2016, 3, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Long, D.S.; McCallum, J.D. On-Combine, multi-sensor data collection for post-harvest assessment of environmental stress in wheat. Precis. Agric. 2015, 16, 492–504. [Google Scholar] [CrossRef]
- Kim, Y.-D.; Yang, Y.-M.; Kang, W.-S.; Kim, D. On the design of beacon based wireless sensor network for agricultural emergency monitoring systems. Comput. Stand. Interfaces 2014, 36, 288–299. [Google Scholar] [CrossRef]
- Srbinovska, M.; Gavrovski, C.; Dimcev, V.; Krkoleva, A.; Borozan, V. Environmental parameters monitoring in precision agriculture using wireless sensor networks. J. Clean. Prod. 2015, 88, 297–307. [Google Scholar] [CrossRef]
- Estrada-Lopez, J.J.; Atoche, A.C.; Vazquez-Castillo, J.; Sanchez-Sinencio, E. Smart Soil Parameters Estimation System Using an Autonomous Wireless Sensor Network With Dynamic Power Management Strategy. IEEE Sens. J. 2018, 18, 8913–8923. [Google Scholar] [CrossRef]
- Henry, E.; Adamchuk, V.; Stanhope, T.; Buddle, C.; Rindlaub, N. Precision apiculture: Development of a wireless sensor network for honeybee hives. Comput. Electron. Agric. 2019, 156, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Bing, S.; Victor, S.; Dean, Z.; Suolin, D.; Jianming, J.A. Wireless sensor Network-Based monitoring system for freshwater fishpond aquaculture. Biosyst. Eng. 2018, 172, 57–66. [Google Scholar]
- Dobslaw, F.; Zhang, T.; Gidlund, M. QoS-Aware Cross-Layer Configuration for Industrial Wireless Sensor Networks. IEEE Trans. Ind. Inform. 2016, 12, 1679–1691. [Google Scholar] [CrossRef]
- Costa, D.G.; Collotta, M.; Pau, G.; Duran-Faundez, C. A Fuzzy-Based Approach for Sensing, Coding and Transmission Configuration of Visual Sensors in Smart City Applications. Sensors 2017, 17, 93. [Google Scholar] [CrossRef]
- Li, X.; Wan, J.; Dai, H.-N.; Imran, M.; Xia, M.; Celesti, A. A Hybrid Computing Solution and Resource Scheduling Strategy for Edge Computing in Smart Manufacturing. IEEE Trans. Ind. Inform. 2019, 15, 4225–4234. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Wan, J.; Liu, C.; Imran, M. Adaptive Transmission Optimization in SDN-Based Industrial Internet of Things With Edge Computing. IEEE Internet Things J. 2018, 5, 1351–1360. [Google Scholar] [CrossRef]
- Zeng, D.; Li, P.; Guo, S.; Miyazaki, T.; Hu, J.; Xiang, Y. Energy Minimization in Multi-Task Software-Defined Sensor Networks. IEEE Trans. Comput. 2015, 64, 3128–3139. [Google Scholar] [CrossRef]
- Li, G.; Guo, S.; Yang, Y.; Yang, Y. Traffic Load Minimization in Software Defined Wireless Sensor Networks. IEEE Internet Things J. 2018, 5, 1370–1378. [Google Scholar] [CrossRef]
- Jun, D.; Cai, H.; Wang, X. Improved Flow Awareness by Intelligent Collaborative Sampling in Software Defined Networks. In Proceedings of the International Conference on 5G for Future Wireless Networks, Beijing, China, 23–24 February 2019; pp. 182–194. [Google Scholar]
- Misra, S.; Bera, S.; Achuthananda, M.P.; Pal, S.K.; Obaidat, M.S. Situation-Aware protocol switching in Software-Defined wireless sensor network systems. IEEE Syst. J. 2018, 12, 2353–2360. [Google Scholar]
Sensor Type | Range | Accuracy | Interface |
---|---|---|---|
Soil salinity | 0–3000 mg/L | ±3% | UART |
Soil temperature | −30–70 °C | ±2% | IIC |
Soil humidity | 0–100% | ±2% | IIC |
Soil pH | 0–14 pH | ±3% | UART |
CO2 | 0–5000 ppm | ±5% | UART |
Air temperature & humidity | −20–80 °C; 0–100% | ±5%; ±5% | IIC |
Atmospheric pressure | 300–1100 hpa | ±0.8% | SPI |
Ambient light | 1–60,000 lx | ±5% | IIC |
Sensor Type | Sensing Time (s) | Working Voltage (V) | Working Current (mA) |
---|---|---|---|
Soil salinity | 3 | 12 | 70 |
Soil temperature | 1 | 12 | 50 |
Soil humidity | 1 | 12 | 20 |
Soil pH | 15 | 12 | 20 |
CO2 | 60 | 3.6 | 20 |
Air temperature & humidity | 0.04 | 3.6 | 5 |
Atmospheric pressure | 1 | 3.6 | 100 |
Ambient light | 0.12 | 3.6 | 80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Ma, Z.; Zheng, J.; Liu, Y.; Zhu, L.; Zhou, N. An Effective Edge-Assisted Data Collection Approach for Critical Events in the SDWSN-Based Agricultural Internet of Things. Electronics 2020, 9, 907. https://doi.org/10.3390/electronics9060907
Li X, Ma Z, Zheng J, Liu Y, Zhu L, Zhou N. An Effective Edge-Assisted Data Collection Approach for Critical Events in the SDWSN-Based Agricultural Internet of Things. Electronics. 2020; 9(6):907. https://doi.org/10.3390/electronics9060907
Chicago/Turabian StyleLi, Xiaomin, Zhiyu Ma, Jianhua Zheng, Yongxin Liu, Lixue Zhu, and Nan Zhou. 2020. "An Effective Edge-Assisted Data Collection Approach for Critical Events in the SDWSN-Based Agricultural Internet of Things" Electronics 9, no. 6: 907. https://doi.org/10.3390/electronics9060907
APA StyleLi, X., Ma, Z., Zheng, J., Liu, Y., Zhu, L., & Zhou, N. (2020). An Effective Edge-Assisted Data Collection Approach for Critical Events in the SDWSN-Based Agricultural Internet of Things. Electronics, 9(6), 907. https://doi.org/10.3390/electronics9060907