A Novel 8T Cell-Based Subthreshold Static RAM for Ultra-Low Power Platform Applications
Abstract
:1. Introduction
2. Proposed 8T SRAM Cell
2.1. Bit-Cell Structure and Layout
2.2. Standby Mode
2.3. Read Operation
2.4. Write Operation
2.5. Half-Select Issue
2.5.1. Row Half-Select
2.5.2. Column Half-Select
3. Macro Design
3.1. Macro Organization
3.2. Cell Array Architecture
3.3. Wordline Booster
3.4. Negative Voltage Generator
4. Design Results
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Calhoun, B.H.; Ryan, J.F.; Khanna, S.; Putic, M.; Lach, J. Flexible circuits and architectures for ultralow power. Proc. IEEE 2010, 98, 267–282. [Google Scholar] [CrossRef]
- Chang, L.; Montoye, R.K.; Nakamura, Y.; Batson, K.A.; Eickemeyer, R.J.; Dennard, R.H.; Haensch, W.; Jamsek, D. An 8T-SRAM for variability tolerance and low-voltage operation in high-performance caches. IEEE J. Solid-State Circuits 2008, 43, 956–963. [Google Scholar] [CrossRef]
- Calhoun, B.H.; Chandrakasan, A.P. A 256-kb 65-nm sub-threshold SRAM design for ultra-low-voltage operation. IEEE J. Solid-State Circuits 2007, 42, 680–688. [Google Scholar] [CrossRef]
- Verma, N.; Chandrakasan, A.P. A 256 kb 65 nm 8T subthreshold SRAM employing sense-amplifier redundancy. IEEE J. Solid-State Circuits 2008, 43, 141–149. [Google Scholar] [CrossRef]
- Kim, T.-H.; Liu, J.; Keane, J.; Kim, C.H. A 0.2 V, 480 kb subthreshold SRAM with 1 k cells per bitline for ultra-low-voltage computing. IEEE J. Solid-State Circuits 2008, 43, 518–529. [Google Scholar] [CrossRef]
- Sinangil, M.E.; Verma, N.; Chandrakasan, A.P. A reconfigurable 8T ultra-dynamic voltage scalable (U-DVS) SRAM in 65 nm CMOS. IEEE J. Solid-State Circuits 2009, 44, 3163–3173. [Google Scholar] [CrossRef]
- Chang, M.-F.; Chang, S.-W.; Chou, P.-W.; Wu, W.-C. A 130 mV SRAM with expanded write and read margins for subthreshold applications. IEEE J. Solid-State Circuits 2011, 46, 520–529. [Google Scholar] [CrossRef]
- Kushwah, C.B.; Vishvakarma, S.K. A single-ended with dynamic feedback control 8T subthreshold SRAM cell. IEEE Trans. Very Large Scale Integr. Syst. 2016, 24, 373–377. [Google Scholar] [CrossRef]
- Kulkarni, J.P.; Goel, A.; Ndai, P.; Roy, K. A read-disturb-free, differential sensing 1R/1W port, 8T bitcell array. IEEE Trans. Very Large Scale Integr. Syst. 2011, 19, 1727–1730. [Google Scholar] [CrossRef]
- Do, A.-T.; Yeo, K.-S.; Kim, T.T.-H. A 32kb 9T SRAM with PVT-tracking read margin enhancement for ultra-low voltage operation. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems, Lisbon, Portugal, 24–27 May 2015; pp. 2553–2556. [Google Scholar]
- Yabuuchi, M.; Nii, K.; Tsukamoto, Y.; Ohbayashi, S.; Nakase, Y.; Shinohara, H. A 45nm 0.6V cross-point 8T SRAM with negative biased read/write assist. In Proceedings of the 2009 Symposium on VLSI Circuits, Kyoto, Japan, 16–18 June 2009; pp. 158–159. [Google Scholar]
- Do, A.-T.; Low, J.Y.S.; Low, J.Y.L.; Kong, Z.-H.; Tan, X.; Yeo, K.-S. An 8T differential SRAM with improved noise margin for bit-interleaving in 65 nm CMOS. IEEE Trans. Circuits Syst. I Regul. Pap. 2011, 58, 1252–1263. [Google Scholar]
- Chang, I.J.; Kim, J.-J.; Park, S.P.; Roy, K. A 32 kb 10T sub-threshold SRAM array with bit-interleaving and differential read scheme in 90 nm CMOS. IEEE J. Solid-State Circuits 2009, 44, 650–658. [Google Scholar] [CrossRef] [Green Version]
- Tu, M.-H.; Lin, J.-Y.; Tsai, M.-C.; Lu, C.-Y.; Lin, Y.-J.; Wang, M.-H.; Huang, H.-S.; Lee, K.-D.; Shih, W.-C.; Jou, S.-J.; et al. A single-ended disturb-free 9T subthreshold SRAM with cross-point data-aware write word-line structure, negative bit-line, and adaptive read operation timing tracing. IEEE J. Solid-State Circuits 2012, 47, 1469–1482. [Google Scholar] [CrossRef] [Green Version]
- Chiu, Y.-W.; Hu, Y.-H.; Tu, M.-H.; Zhao, J.-K.; Chu, Y.-H.; Jou, S.-J.; Chuang, C.-T. 40 nm bit-interleaving 12T subthreshold SRAM with data-aware write-assist. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 2578–2585. [Google Scholar] [CrossRef]
- Lu, C.-Y.; Chuang, C.-T.; Jou, S.-J.; Tu, M.-H.; Wu, Y.-P.; Huang, C.-P.; Kan, P.-S.; Huang, H.-S.; Lee, K.-D.; Kao, Y.-S. A 0.325 V, 600-kHz, 40-nm 72-kb 9T subthreshold SRAM with aligned boosted write wordline and negative write bitline write-assist. IEEE Trans. Very Large Scale Integr. Syst. 2015, 23, 958–962. [Google Scholar] [CrossRef]
- Kulkarni, J.P.; Kim, K.; Roy, K. A 160 mV robust Schmitt trigger based subthreshold SRAM. IEEE J. Solid-State Circuits 2007, 42, 2303–2313. [Google Scholar] [CrossRef]
- Lo, C.-H.; Huang, S.-Y. P-P-N based 10T SRAM cell for low-leakage and resilient subthreshold operation. IEEE J. Solid-State Circuits 2011, 46, 695–704. [Google Scholar] [CrossRef]
- Sarfraz, K.; He, J.; Chan, M. A 140-mV variation-tolerant deep sub-threshold SRAM in 65-nm CMOS. IEEE J. Solid-State Circuits 2017, 52, 2215–2220. [Google Scholar] [CrossRef]
- Chung, Y.; Kim, H. A differential subthreshold SRAM cell for ultra-low voltage embedded computing applications. Int. J. Appl. Eng. Res. 2017, 12, 7998–8003. [Google Scholar]
- Pelliconi, R.; Iezzi, D.; Baroni, A.; Pasotti, M.; Rolandi, P.L. Power efficient charge pump in deep submicron standard CMOS technology. IEEE J. Solid-State Circuits 2003, 38, 1068–1071. [Google Scholar] [CrossRef]
WL | BL | /BL | CAL | |
---|---|---|---|---|
Standby | 0 | VDD | VDD | 0 |
Read | VPP | 0 (floating) | 0 (floating) | VDD |
Write | VPP | VDD/0 | 0/VDD | NVGG |
Proposed 8T | RD-8T | ||
---|---|---|---|
Width/Length (nm/nm) | P1, P2 | 220/180 | 220/180 |
N1, N2 | 220/180 | 420/180 | |
N3, N4 | 420/180 | 220/180 | |
N5, N6 | - | 420/180 | |
P3, P4 | 220/180 | - |
Ref. [4] | Ref. [7] | Ref. [9] | Ref. [12] | Ref. [13] | Ref. [14] | Ref. [15] | Ref. [18] | Ref. [19] | This Work | |
---|---|---|---|---|---|---|---|---|---|---|
Cell type | 8T | 9T | 8T | 8T | 10T | 9T | 12T | 10T | 16T | 8T |
Process technology | 65 nm | 90 nm | 90 nm | 65 nm | 90 nm | 65 nm | 40 nm | 90 nm | 65 nm | 180 nm |
Array size | 256-kb | 32-kb | 2-kb | 8-kb | 32-kb | 72-kb | 4-kb | 16-kb | 1-kb | 32-kb |
Read scheme | single- ended | single- ended | diff. | diff. | diff. | single- ended | diff. | diff. | diff. | diff. |
Write scheme | diff. | diff. | diff. | diff. | diff. | single- ended | single- ended | diff. | single- ended | diff. |
# of cell control lines | 4-row, 3-col. | 2-row, 5-col. | 2-row, 4-col. | 1-row, 4-col. | 2-row, 3-col. | 2-row, 3-col. | 2-row, 4-col. | 2-row, 2-col. | 3-row, 3-col. | 1-row, 3-col. |
Bit-cell area * | ~1× | 1.2× | ~1× | ~1× | ~1.61× | 1.52× | 1.64× | ~1.62× | ~8.34× | ~1× |
Read disturb-free | yes | yes | yes | no | yes | yes | yes | yes | yes | yes |
Write-ability | larger than 6T | larger than 6T | same as 6T | ~1.1× over 6T | less than 6T | less than 6T | ~1.38× over 6T | less than 6T | larger than 6T | ~3.6× over 6T |
Efficient bit- interleaving | no | no | no | yes | yes | yes | yes | yes | yes | yes |
VMIN | 0.35 V | 0.13 V | 0.26 V | 0.2 V | 0.16 V | 0.35 V | 0.35 V | 0.285 V | 0.14 V | 0.21 V |
fMAX @ VMIN | 25 kHz | N/A | N/A | 41 kHz | 0.5 kHz | 229 kHz | 11.5 MHz | 450 kHz | 13.1 kHz | 1.33 kHz |
Total power @ VMIN, fMAX | ~2.6 µW | N/A | N/A | N/A | 123 nW | 4.05 µW | 22 µW | N/A | 30.5 nW | 10.4 nW |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Manisankar, S.; Chung, Y. A Novel 8T Cell-Based Subthreshold Static RAM for Ultra-Low Power Platform Applications. Electronics 2020, 9, 928. https://doi.org/10.3390/electronics9060928
Kim T, Manisankar S, Chung Y. A Novel 8T Cell-Based Subthreshold Static RAM for Ultra-Low Power Platform Applications. Electronics. 2020; 9(6):928. https://doi.org/10.3390/electronics9060928
Chicago/Turabian StyleKim, Taehoon, Sivasundar Manisankar, and Yeonbae Chung. 2020. "A Novel 8T Cell-Based Subthreshold Static RAM for Ultra-Low Power Platform Applications" Electronics 9, no. 6: 928. https://doi.org/10.3390/electronics9060928
APA StyleKim, T., Manisankar, S., & Chung, Y. (2020). A Novel 8T Cell-Based Subthreshold Static RAM for Ultra-Low Power Platform Applications. Electronics, 9(6), 928. https://doi.org/10.3390/electronics9060928