Engineering Metamaterials: Present and Future
1. Introduction
2. The Present Issue
3. Future
Acknowledgments
Conflicts of Interest
References
- Tretyakov, S.A.; Nefedov, I.S.; Simovski, C.R.; Maslovski, S.I. Modelling and Microwave Properties of Artificial Materials with Negative Parameters. In Advances in Electromagnetics of Complex Media and Metamaterials, NATO Science Series (Series II: Mathematics, Physics and Chemistry); Zouhdi, S., Sihvola, A., Arsalane, M., Eds.; Springer: Dordrecht, The Netherlands, 2003; Chapter 89; pp. 99–122. [Google Scholar] [CrossRef]
- Kärkkäinen, M.K.; Maslovski, S.I. Wave propagation, refraction, and focusing phenomena in Lorentzian double-negative materials: A theoretical and numerical study. Microw. Opt. Technol. Lett. 2003, 37, 4–7. [Google Scholar] [CrossRef]
- Maslovski, S.; Tretyakov, S.; Alitalo, P. Near-field enhancement and imaging in double planar polariton-resonant structures. J. Appl. Phys. 2004, 96, 1293–1300. [Google Scholar] [CrossRef] [Green Version]
- Alitalo, P.; Maslovski, S.; Tretyakov, S. Near-field enhancement and imaging in double cylindrical polariton-resonant structures: Enlarging superlens. Phys. Lett. A 2006, 357, 397–400. [Google Scholar] [CrossRef] [Green Version]
- Maslovski, S.I.; Silveirinha, M.G. Nonlocal permittivity from a quasistatic model for a class of wire media. Phys. Rev. B 2009, 80, 245101. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.T.; Silveirinha, M.G.; Maslovski, S.I. Finite-difference frequency-domain method for the extraction of effective parameters of metamaterials. Phys. Rev. B 2009, 80, 235124. [Google Scholar] [CrossRef] [Green Version]
- Maslovski, S.I.; Morgado, T.A.; Silveirinha, M.G.; Kaipa, C.S.R.; Yakovlev, A.B. Generalized additional boundary conditions for wire media. New J. Phys. 2010, 12, 113047. [Google Scholar] [CrossRef]
- Luukkonen, O.; Maslovski, S.I.; Tretyakov, S.A. A Stepwise Nicolson–Ross–Weir-Based Material Parameter Extraction Method. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1295–1298. [Google Scholar] [CrossRef]
- Eccleston, K.W.; Platt, I.G. Identifying Near-Perfect Tunneling in Discrete Metamaterial Loaded Waveguides. Electronics 2019, 8, 84. [Google Scholar] [CrossRef] [Green Version]
- Itami, G.; Sakai, O.; Harada, Y. Two-Dimensional Imaging of Permittivity Distribution by an Activated Meta-Structure with a Functional Scanning Defect. Electronics 2019, 8, 239. [Google Scholar] [CrossRef] [Green Version]
- Kim, M. Analytical Modeling of Metamaterial Differential Transmission Line Using Corrugated Ground Planes in High-Speed Printed Circuit Boards. Electronics 2019, 8, 299. [Google Scholar] [CrossRef] [Green Version]
- Fahad, A.K.; Ruan, C.; Chen, K. Dual-Wide-Band Dual Polarization Terahertz Linear to Circular Polarization Converters based on Bi-Layered Transmissive Metasurfaces. Electronics 2019, 8, 869. [Google Scholar] [CrossRef] [Green Version]
- Venneri, F.; Costanzo, S.; Borgia, A. A Dual-Band Compact Metamaterial Absorber with Fractal Geometry. Electronics 2019, 8, 879. [Google Scholar] [CrossRef] [Green Version]
- Radonić, V.; Birgermajer, S.; Podunavac, I.; Djisalov, M.; Gadjanski, I.; Kitić, G. Microfluidic Sensor Based on Composite Left-Right Handed Transmission Line. Electronics 2019, 8, 1475. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Shi, X.; Huang, W.; Zhang, W.; Hu, F.; Qin, Z.; Xiong, X. Two-Bit Terahertz Encoder Realized by Graphene-Based Metamaterials. Electronics 2019, 8, 1528. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maslovski, S. Engineering Metamaterials: Present and Future. Electronics 2020, 9, 932. https://doi.org/10.3390/electronics9060932
Maslovski S. Engineering Metamaterials: Present and Future. Electronics. 2020; 9(6):932. https://doi.org/10.3390/electronics9060932
Chicago/Turabian StyleMaslovski, Stanislav. 2020. "Engineering Metamaterials: Present and Future" Electronics 9, no. 6: 932. https://doi.org/10.3390/electronics9060932
APA StyleMaslovski, S. (2020). Engineering Metamaterials: Present and Future. Electronics, 9(6), 932. https://doi.org/10.3390/electronics9060932