A Review on Biomedical MIMO Radars for Vital Sign Detection and Human Localization
Abstract
:1. Introduction
- Improved detection performances due to the signal-to-noise (SN) ratio of the received signals better than the single-input-single-output systems.
- Angle estimation capabilities.
- Lower minimum detectable speed.
- MIMO systems exploited for enhancing the accuracy and reliability of the vital sign detection.
- MIMO systems employed for both the human vital sign detection and human precise location.
2. Preliminary Background
2.1. Body Physiology
2.2. MIMO Theory
- Isotropic and linear transmission medium: this ensures that the propagation properties do not change with the AoA and that the received signals can be computed as a linear superposition of the signal wave fronts generated by the reflecting objects.
- Far-field assumption: this ensures that the received signals can be considered as parallel to each other. It is usually a reasonable assumption by ensuring the distance between the targets and the radar be much larger than the dimension of the antenna array. A rule of thumb for verifying this assumption is provided in [30], i.e., the distance radar-target is larger than , with being the dimension of the antenna array and the wavelength of the signals.
- Narrowband assumption: this ensures that the frequency components of the received signals are grouped around the carrier frequency. Therefore, by considering n reflecting objects generating n source signals (:
- Additive White Gaussian Noise (AWGN) channel: the noise content is uncorrelated.
3. Biomedical Application of MIMO Radars
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dinh, T.; Nguyen, T.; Phan, H.-P.; Nguyen, N.-T.; Dao, D.V.; Bell, J. Stretchable respiration sensors: Advanced designs and multifunctional platforms for wearable physiological monitoring. Biosens. Bioelectron. 2020, 166, 112460. [Google Scholar] [CrossRef]
- Lo Presti, D.; Carnevale, A.; D’Abbraccio, J.; Massari, L.; Massaroni, C.; Sabbadini, R.; Zaltieri, M.; Di Tocco, J.; Bravi, M.; Miccinilli, S.; et al. A multi-parametric wearable system to monitor neck movements and respiratory frequency of computer workers. Sensors 2020, 20, 536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massaroni, C.; Di Tocco, J.; Bravi, M.; Carnevale, A.; Presti, D.L.; Sabbadini, R.; Miccinilli, S.; Sterzi, S.; Formica, D.; Schena, E. Respiratory monitoring during physical activities with a multi-sensor smart garment and related algorithms. IEEE Sens. J. 2020, 20, 2173–2180. [Google Scholar] [CrossRef]
- Cardillo, E.; Di Mattia, V.; Manfredi, G.; Russo, P.; De Leo, A.; Caddemi, A.; Cerri, G. An electromagnetic sensor prototype to assist visually impaired and blind people in autonomous walking. IEEE Sens. J. 2018, 18, 2568–2576. [Google Scholar] [CrossRef]
- Khanam, F.-T.-Z.; Al-Naji, A.; Chahl, J. Remote monitoring of vital signs in diverse non-clinical and Clinical scenarios using computer vision systems: A review. Appl. Sci. 2019, 9, 4474. [Google Scholar] [CrossRef] [Green Version]
- Bennett, S.; El Harake, T.N.; Goubran, R.; Knoefel, F. Adaptive eulerian video processing of thermal video: An experimental analysis. IEEE Trans. Instrum. Meas. 2017, 66, 2516–2524. [Google Scholar] [CrossRef]
- Garbey, M.; Sun, N.; Merla, A.; Pavlidis, I. Contact-free measurement of cardiac pulse based on the analysis of thermal imagery. IEEE Trans. Biomed. Eng. 2007, 54, 1418–1426. [Google Scholar] [CrossRef]
- Poh, M.-Z.; McDuff, D.J.; Picard, R.W. Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans. Biomed. Eng. 2011, 58, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Thakor, N. Photoplethysmography revisited: From contact to noncontact, from point to imaging. IEEE Trans. Biomed. Eng. 2016, 63, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Caddemi, A.; Cardillo, E. Optical control of gain amplifiers at microwave frequencies. In Proceedings of the Computing and Electromagnetics International Workshop, Barcelona, Spain, 21–24 June 2017; pp. 51–52. [Google Scholar] [CrossRef]
- Visweswaran, A. 9.4 a 145 GHz FMCW-radar transceiver in 28nm CMOS. In Proceedings of the IEEE International Solid- State Circuits Conference, San Francisco, CA, USA, 17–21 February 2019; pp. 168–170. [Google Scholar] [CrossRef]
- Caddemi, A.; Cardillo, E.; Crupi, G. Light activation of noise at microwave frequencies: A study on scaled gallium arsenide HEMT’s. IET Circ. Device. Syst. 2018, 12, 242–248. [Google Scholar] [CrossRef]
- Ren, L.; Wang, H.; Naishadham, K.; Kilic, O.; Fathy, A.E. Phase based methods for heart rate detection using UWB impulse Doppler radar. IEEE Trans. Microw. Theory Tech. 2016, 64, 3319–3331. [Google Scholar] [CrossRef]
- Cardillo, E.; Li, C.; Caddemi, A. Empowering blind people mobility: A millimeter-wave radar cane. In Proceedings of the IEEE International Workshop on Metrology for Industry 4.0 & IoT, Roma, Italy, 3–5 June 2020; pp. 213–217. [Google Scholar] [CrossRef]
- Rittiplang, A.; Phasukkit, P.; Orankitanun, T. Optimal central frequency for non-contact vital sign detection using monocycle UWB radar. Sensors 2020, 20, 2916. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, W.; Zhou, M.; Ren, A.; Tian, Z. Remote monitoring of human vital signs based on 77-GHz mm-wave FMCW radar. Sensors 2020, 20, 2999. [Google Scholar] [CrossRef]
- Cardillo, E.; Caddemi, A. Feasibility study to preserve the health of an industry 4.0 worker: A radar system for monitoring the sitting-time. In Proceedings of the IEEE Workshop on Metrology for Industry 4.0 and IoT, Naples, Italy, 4–6 June 2019; pp. 254–258. [Google Scholar] [CrossRef]
- Cardillo, E.; Caddemi, A. Insight on electronic travel aids for visually impaired people: A review on the electromagnetic technology. Electronics 2019, 8, 1281. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-K.; Shi, H.; Zhao, S.; Huang, X.-D. Vital sign detection during large-scale and fast body Movements based on an adaptive noise cancellation algorithm using a single Doppler radar sensor. Sensors 2020, 20, 4183. [Google Scholar] [CrossRef]
- Caddemi, A.; Cardillo, E. Automotive anti-abandon systems: A millimeter-wave radar sensor for the detection of child presence. In Proceedings of the IEEE International Conference on Advanced Technologies, Systems and Services in Telecommunications, Nis, Serbia, 23–25 October 2019; pp. 94–97. [Google Scholar] [CrossRef]
- Rodriguez, D.; Li, C. Sensitivity and distortion analysis of a 125-GHz interferometry radar for submicrometer motion sensing applications. IEEE Trans. Microw. Theory Tech. 2019, 67, 5384–5395. [Google Scholar] [CrossRef]
- Kim, S.; Nguyen, C. A displacement measurement technique using millimeter-wave interferometry. IEEE Trans. Microw. Theory Tech. 2003, 51, 1724–1728. [Google Scholar] [CrossRef]
- Cardillo, E.; Caddemi, A. A novel approach for crosstalk minimization in FMCW radars. Electron. Lett. 2017, 53, 1379–1381. [Google Scholar] [CrossRef]
- Immoreev, I.I.; Fedotov, P.G.S.D.V. Ultra wideband radar systems: Advantages and disadvantages. In Proceedings of the IEEE Conference on Ultra Wideband Systems and Technologies, Baltimore, MD, USA, 21–23 May 2002; pp. 201–205. [Google Scholar] [CrossRef]
- Li, J.; Stoica, P. MIMO Radar Signal Processing, 1st ed.; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Hintermuller, C. Advanced Biosignal Processing and Diagnostic Methods, 1st ed.; InTechOpen: London, UK, 2016. [Google Scholar]
- Al-Naji, A.; Gibson, K.; Lee, S.; Chahl, J. Monitoring of cardiorespiratory signal: Principles of remote measurements and review of methods. IEEE Access 2017, 5, 15776–15790. [Google Scholar] [CrossRef]
- Bliss, D.W.; Forsythe, K.W. Multiple-input multiple-output (MIMO) radar and imaging: Degrees of freedom and resolution. In Proceedings of the 37th Asilomar Conf. Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; Volume 1, pp. 54–59. [Google Scholar] [CrossRef]
- Zhizang, C.; Gopal, K.G.; Yiqiang, Y. Introduction to Direction-of-Arrival Estimation, 1st ed.; Artech House: London, UK, 2010. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design, 3rd ed.; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Krim, H.; Viberg, M. Two decades of array signal processing research. IEEE Signal Proc. Mag. 1996, 13, 67–94. [Google Scholar] [CrossRef]
- Litva, J.; Lo, T.K.Y. Digital Beamforming in Wireless Communications; Artech House: Norwood, MA, USA, 1996. [Google Scholar]
- Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 2408–2418. [Google Scholar] [CrossRef] [Green Version]
- Makhoul, J. Linear prediction: A tutorial review. Proc. IEEE 1975, 63, 561–580. [Google Scholar] [CrossRef]
- Ziskind, I.; Wax, M. Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans. Acoust. Speech Signal Process. 1998, 36, 1553–1560. [Google Scholar] [CrossRef]
- Vander Veen, A.J.; Deprettere, E.F.; Swindlehurst, A.L. Subspace based signal analysis using singular value decomposition. Proc. IEEE 1993, 81, 1277–1308. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef] [Green Version]
- HaHaardt, M.; Zoltowski, M.D.; Mathews, C.P.; Nossek, J. 2D unitary ESPRIT for efficient 2D parameter estimation. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Detroit, MI, USA, 9–12 May 1995; pp. 2096–2099. [Google Scholar] [CrossRef]
- Roy, R.; Kailath, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. [Google Scholar] [CrossRef] [Green Version]
- Nango, M.; Honma, N.; Nishimori, K.; Sato, H. Biological activity detection method using MIMO system. IEICE Commun. Express 2013, 2, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Sasakawa, D.; Konno, K.; Honma, N.; Nishimori, K.; Takemura, N.; Mitsui, T.; Tsunekawa, Y. Localizing living body using bistatic MIMO radar in multi-path environment. In Proceedings of the European Conference on Antennas and Propagation, The Hague, The Netherlands, 6–11 April 2014; pp. 3253–3257. [Google Scholar] [CrossRef]
- Konno, K.; Honma, N.; Sasakawa, D.; Tsunekawa, Y.; Nishimori, K.; Takemura, N.; Mitsui, T. Localizing multiple target using bistatic MIMO radar in multi-path environment. In Proceedings of the IEEE International Workshop on Electromagnetics, Sapporo, Japan, 4–6 August 2014; pp. 90–91. [Google Scholar] [CrossRef]
- Biallawons, O.; Klare, J. Person localization by detection of breathing with the MIMO radar MIRA-CLE Ka. In Proceedings of the 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 3–5 June 2014; pp. 1–4. [Google Scholar]
- Brovoll, S.; Berger, T.; Paichard, Y.; Aardal, Ø.; Lande, T.S.; Hamran, S. Time-lapse imaging of human heart motion with switched array UWB radar. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 704–715. [Google Scholar] [CrossRef]
- Walterscheid, I.; Smith, G.E. Respiration and heartbeat monitoring using a distributed pulsed MIMO radar. In Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Seogwipo, Korea, 11–15 July 2017; pp. 3449–3452. [Google Scholar] [CrossRef]
- Muragaki, M.; Okumura, S.; Maehara, K.; Sakamoto, T.; Yoshioka, M.; Inoue, K.; Fukuda, T.; Sakai, H.; Sato, T. Noncontact respiration monitoring of multiple closely positioned patients using ultra-wideband array radar with adaptive beamforming technique. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, LA, USA, 5–9 March 2017; pp. 1118–1122. [Google Scholar] [CrossRef]
- Sasakawa, D.; Honma, N.; Nakayama, T.; Iizuka, S. Fast living-body localization algorithm for MIMO radar in multipath environment. IEEE Trans. Antennas Propag. 2018, 66, 7273–7281. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, H.; Xu, J.; Wang, H.; Kageza, A.; AlQarni, S.; Wu, S. Non-contact non-invasive heart and respiration rates monitoring with MIMO radar sensing. In Proceedings of the IEEE Global Communications Conference, Abu Dhabi, UAE, 9–13 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Sasakawa, D.; Honma, N.; Nakayama, T.; Iizuka, S. Human posture identification using a MIMO array. Electronics 2018, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Zhu, A.; Qi, X.; Fan, T.; Gu, Z.; Lv, Q.; Ye, D.; Huangfu, J.; Sun, Y.; Zhu, W.; Ran, L. Indoor localization for passive moving objects based on a redundant SIMO radar sensor. IEEE Trans. Emerg. Sel. Topics Circuits Syst. 2018, 8, 271–279. [Google Scholar] [CrossRef]
- Nosrati, M.; Shahsavari, S.; Lee, S.; Wang, H.; Tavassolian, N. A concurrent dual-beam phased-array Doppler radar using MIMO beamforming techniques for short-range vital-signs monitoring. IEEE Trans. Antennas Propag. 2019, 67, 2390–2404. [Google Scholar] [CrossRef]
- Wang, S.; Kueppers, S.; Cetinkaya, H.; Herschel, R. 3D localization and vital sign detection of human subjects with a 120 GHz MIMO radar. In Proceedings of the International Radar Symposium, Ulm, Germany, 26–28 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Sakamoto, T. Noncontact measurement of human vital signs during sleep using low-power millimeter-wave ultrawideband MIMO array radar. In Proceedings of the IEEE MTT-S International Microwave Biomedical Conference, Nanjing, China, 6–8 May 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, H.; Hong, H.; Zhao, H.; Zhu, X.; Li, C. Multi-target vital signs detection using SIMO cntinuous-wave radar with DBF technique. In Proceedings of the IEEE Radio and Wireless Symposium, San Antonio, TX, USA, 26–29 January 2020; pp. 194–196. [Google Scholar] [CrossRef]
- Sacco, G.; Pisa, S. A MIMO radar for vital signs recording. In Proceedings of the Photonics & Electromagnetics Research Symposium, Rome, Italy, 17–20 June 2019; pp. 387–393. [Google Scholar] [CrossRef]
Ref. n. | Radar Configuration | Measured Parameters | Number of Targets | Signal Processing | MIMO Configuration | Operating Frequency |
---|---|---|---|---|---|---|
[42] | Bistatic | Human localization | Single human target | MUSIC algorithm | 4Tx4R | 2.47 GHz |
[43] | Monostatic | Human localization, breathing detection | Multiple human targets | Frequency analysis | 16Tx16R | 36.44 GHz |
[44] | Monostatic | Heart imaging | Single human target | DAS beamformer | 7x8T/R | 0.75 GHz–12.27 GHz |
[45] | Bistatic | Breathing detection | Single human target | Frequency analysis | 4Tx4R | 94 GHz |
[46] | Monostatic | Human localization, breathing detection | Multiple human targets | Modified Capon beamformer | 1Tx4R | 60.5 GHz |
[47] | Monostatic | Human localization | Multiple human targets | MUSIC algorithm | 4Tx4R & 8Tx8R | 2.47 GHz |
[48] | Monostatic | Heart and breathing detection | Single human target | Frequency analysis | 1Tx4R | 3.3 GHz–10.3 GHz |
[49] | Bistatic | Human localization, posture identification | Single human target | MUSIC algorithm | 16Tx16R | 2.47 GHz |
[50] | Monostatic | Human and moving objects localization | Single target | Cooperative tracking-algorithm | 1Tx3R | 5.8 GHz |
[51] | Monostatic | Heart and breathing detection | Multiple human targets | Concurrent multibeam | 4Tx4R | 2.4 GHz |
[52] | Monostatic | Human localization, breathing and heartbeat detection | Multiple human targets | Frequency analysis | 2Tx8R | 120 GHz |
[53] | Monostatic | Heartbeat detection | Single target | Maximum ratio combining | 2Tx4R | 60.5 GHz |
[54] | Monostatic | Breathing detection | Single target | Beamforming | 1Tx8R | 5.8 GHz |
[55] | Monostatic | Human localization, heartbeat detection | Single target | Frequency analysis | 1Tx4R | 5.8 GHz |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardillo, E.; Caddemi, A. A Review on Biomedical MIMO Radars for Vital Sign Detection and Human Localization. Electronics 2020, 9, 1497. https://doi.org/10.3390/electronics9091497
Cardillo E, Caddemi A. A Review on Biomedical MIMO Radars for Vital Sign Detection and Human Localization. Electronics. 2020; 9(9):1497. https://doi.org/10.3390/electronics9091497
Chicago/Turabian StyleCardillo, Emanuele, and Alina Caddemi. 2020. "A Review on Biomedical MIMO Radars for Vital Sign Detection and Human Localization" Electronics 9, no. 9: 1497. https://doi.org/10.3390/electronics9091497
APA StyleCardillo, E., & Caddemi, A. (2020). A Review on Biomedical MIMO Radars for Vital Sign Detection and Human Localization. Electronics, 9(9), 1497. https://doi.org/10.3390/electronics9091497