Dynamic Chaotic Multi-Attribute Group Decision Making under Weighted T-Spherical Fuzzy Soft Rough Sets
Abstract
:1. Introduction
2. Motivation and Comparison
- How to group DMs more reasonably.
- The relationship between DMs and decision-making attributes.
- We introduced familiarity in DMAGDM for the first time to portray the relationship between DMs and attributes. By introducing familiarity, the annoyance and unreasonableness of DMs from groupings can be avoided;
- We obtained a more general new weighted T-SFSRS by considering the familiarity. By giving the weighted T-SFSRS concept, familiarity can be better taken into account;
- We provided a model for the DMAGDM considering familiarity, which we call dynamic chaotic multi-attribute group decision making (DCMAGDM). This model can better describe the real decision problem compared with the existing models;
- We provide an algorithm for DCMAGDM in complex fuzzy scenarios. A basic framework structure is also provided for the algorithm of the DMAGDM problem.
3. Preliminaries
3.1. Fuzzy Soft Rough Sets Theorem
3.1.1. Fuzzy Set (FS)
3.1.2. Rough Set (RS)
3.1.3. Soft Set (SS)
3.1.4. Fuzzy Soft Set (FSS)
3.1.5. Fuzzy Soft Rough Set (FSRS)
3.2. Dynamic Multiple-Attribute Group Decision Making (DMAGDM)
3.2.1. Multi-Attribute Group Decision Making (MAGDM)
- is the set of considered alternatives;
- is the set of attributes, which are used for evaluating alternatives;
- is the set of the DMs involved in the decision-making process;
- is the weight vector of the attribute ();
- is the weight vector of the DMs ();
- is the decision matrix set, while is the decision matrix of the kth DM:
- is the kth DM evaluation of the ith alternative against the jth attribute (, , ).
3.2.2. Dynamic Multi-Attribute Group Decision Making (DMAGDM)
- is the set of considered alternatives and is the number of alternatives in the period ;
- is the set of attributes, which are used for evaluating of alternatives, and is the number of attributes in the period ;
- is the set of the DMs involved in the decision-making process and is the number of DMs in the period ;
- is the weight vector of the attribute ();
- is the weight vector of the DMs ();
- is the decision matrix set, while is the decision matrix of the kth DM in the period ;
- is the kth DM evaluation of the ith alternative against the jth attribute in the period (; ; ).
4. A Novel New Method for DCMAGDM under Weighted T-SFSRS
4.1. Dynamic Chaotic Multi-Attribute Group Decision Making (DCMAGDM)
- is the set of the familiarity of DMs with attributes in the period ;
- is the familiarity vector of the kth DM in the period ();
- is the familiarity of the kth DM against the jth attribute in the period . (; )
4.2. Weighted T-spherical Fuzzy Soft Rough Sets
4.3. Dynamic Transfer Equation of DCMAGDM
4.3.1. General Dynamic Transfer Equation in DCMAGDM
4.3.2. Weighted Dynamic Transfer Equation Based on T-SFSRS
- All objects in and may change with the period ;
- All elements in and are the real number;
- All elements in and are presented in the form of the T-Spherical Fuzzy Number (T-SFN);
- For the information aggregation function , we choose the weighted arithmetic mean operator:
- For the evaluation cumulative function , considering that the evaluation score of the previous period will weaken as the period keeps increasing, we choose the following processing means to reflect this point,
4.4. The Algorithm for DCMAGDM
Algorithm 1 The Algorithm for DCMAGDM. |
Input: |
Total number of periods: |
Discount Coefficient: |
for to do |
Input: |
end for |
Output: |
Sorting/Ranking of alternatives: |
Step 1: |
Calculate the evaluation score. |
for to do |
for do |
for do |
Calculate according to the Formula (40) |
end for |
Calculate according to the Formula (41) |
end for |
end for |
Calculate according to the Formula (42) |
Step 2: |
Sorting by the value of and |
return and |
5. Numerical Analysis
- DM has different weights in different periods, and there are three DMs in the whole decision-making process, ;
- Each attribute may have different weights in different periods, with a total of five attributes to be considered, ;
- There are nine alternatives, each of which may or may not appear in a given period, ;
- DMs select T-SFN for scoring evaluation.
5.1. First Iteration
- Step 1:
- Step 2:
- Step 3:
5.2. Second Iteration
- We remove alternatives and from because at the end of an iteration, an alternative will be included in the history set, which means that it may or may not appear in the next iteration. For example, in the new period, the historical alternative no longer exists;
- A new alternative appears at beginning of the second period.
- The weights of DMs have changed because of the addition of completely new DMs or the reallocation of the weights of DMs in the new period.
- The weights of the attributes have changed because of the DM’s perspective in the new period or because new attribute requirements have been introduced.
5.3. Third Iteration
5.4. General Analysis of the Three Periods
- Since the weight of DMs and the weight of attributes may change from period to period, the same alternative has different rankings, e.g., is ranked fifth in the first period, seventh in the second period, and first in the third period;
- Since each evaluation score can be transferred to subsequent periods, an alternative’s ranking in the current period may be different from its overall ranking until current period. For example, the was ranked fifth in the third period, while it was ranked third overall at end of third period.
- For familiarity, even a slight change will have a very significant impact on the sorting. This is exactly why we propose familiarity in the DMAGDM problem to give dynamic chaotic multi-attribute group decisions (DCMAGDM).
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
DM | Decision Maker |
MAGDM | Multi-attribute Group Decision Making |
CMAGDM | Chaoti multi-attribute Group Decision Making |
DMAGDM | Dynamic multi-attribute Group Decision Making |
DCMAGDM | Dynamic chaoti multi-attribute Group Decision Making |
FS | Fuzzy set |
SFS | Spherical Fuzzy Set |
T-SFS | T-spherical Fuzzy Set |
T-SFN | T-spherical Fuzzy Number |
RS | Rough Set |
SS | Soft Set |
FSS | Fuzzy Soft Set |
FSRS | Fuzzy Soft Rough Set |
SFSRS | Spherical Fuzzy Soft Rough Set |
T-SFSRS | T-spherical Fuzzy Soft Rough Set |
Appendix A. DCMAGDM Information Form
0.25 | 0.25 | 0.25 | 0.15 | 0.10 | |
---|---|---|---|---|---|
| 0.46 | (0.97, 0.05, 0.00) | (0.94, 0.07, 0.01) | (0.88, 0.05, 0.09) | (0.80, 0.16, 0.07) | (0.69, 0.12, 0.15) |
(0.99, 0.01, 0.03) | (0.90, 0.04, 0.10) | (0.86, 0.11, 0.00) | (0.71, 0.18, 0.12) | (0.65, 0.15, 0.15) | |
(0.98, 0.04, 0.03) | (0.90, 0.04, 0.02) | (0.89, 0.09, 0.02) | (0.75, 0.16, 0.05) | (0.65, 0.32, 0.14) | |
(0.95, 0.01, 0.03) | (0.90, 0.07, 0.00) | (0.89, 0.09, 0.05) | (0.80, 0.17, 0.02) | (0.63, 0.10, 0.18) | |
(0.96, 0.00, 0.03) | (0.94, 0.04, 0.00) | (0.88, 0.11, 0.07) | (0.79, 0.16, 0.04) | (0.67, 0.40, 0.21) | |
(0.95, 0.00, 0.03) | (0.90, 0.07, 0.08) | (0.89, 0.14, 0.04) | (0.80, 0.20, 0.01) | (0.63, 0.36, 0.06) | |
(0.99, 0.02, 0.00) | (0.91, 0.10, 0.01) | (0.88, 0.08, 0.10) | (0.78, 0.17, 0.02) | (0.60, 0.26, 0.34) | |
(0.97, 0.00, 0.02) | (0.95, 0.05, 0.04) | (0.88, 0.12, 0.05) | (0.79, 0.17, 0.10) | (0.64, 0.35, 0.34) | |
(0.98, 0.01, 0.01) | (0.95, 0.08, 0.02) | (0.87, 0.08, 0.02) | (0.77, 0.19, 0.15) | (0.67, 0.10, 0.27) | |
| 0.33 | (0.87, 0.05, 0.09) | (0.73, 0.18, 0.19) | (0.68, 0.33, 0.27) | (0.96, 0.01, 0.04) | (0.94, 0.01, 0.07) |
(0.88, 0.09, 0.03) | (0.74, 0.19, 0.11) | (0.68, 0.17, 0.02) | (0.99, 0.04, 0.03) | (0.93, 0.08, 0.03) | |
(0.88, 0.07, 0.02) | (0.80, 0.19, 0.07) | (0.65, 0.30, 0.16) | (0.98, 0.02, 0.02) | (0.91, 0.06, 0.09) | |
(0.85, 0.06, 0.09) | (0.70, 0.15, 0.18) | (0.60, 0.13, 0.03) | (0.97, 0.04, 0.04) | (0.90, 0.05, 0.03) | |
(0.87, 0.15, 0.08) | (0.77, 0.16, 0.07) | (0.64, 0.20, 0.13) | (0.98, 0.01, 0.05) | (0.95, 0.07, 0.03) | |
(0.86, 0.12, 0.05) | (0.80, 0.17, 0.08) | (0.69, 0.17, 0.16) | (0.99, 0.01, 0.00) | (0.94, 0.01, 0.07) | |
(0.87, 0.14, 0.02) | (0.76, 0.19, 0.07) | (0.63, 0.23, 0.26) | (0.95, 0.01, 0.03) | (0.94, 0.02, 0.01) | |
(0.90, 0.08, 0.05) | (0.71, 0.15, 0.03) | (0.66, 0.12, 0.39) | (0.99, 0.00, 0.02) | (0.93, 0.04, 0.03) | |
(0.87, 0.13, 0.10) | (0.79, 0.20, 0.03) | (0.70, 0.13, 0.11) | (0.97, 0.02, 0.05) | (0.95, 0.01, 0.03) | |
| 0.21 | (0.78, 0.19, 0.02) | (0.68, 0.36, 0.29) | (0.99, 0.01, 0.04) | (0.90, 0.10, 0.05) | (0.90, 0.05, 0.09) |
(0.72, 0.15, 0.12) | (0.69, 0.39, 0.07) | (0.95, 0.02, 0.05) | (0.95, 0.10, 0.05) | (0.89, 0.10, 0.05) | |
(0.74, 0.16, 0.20) | (0.60, 0.20, 0.15) | (0.99, 0.02, 0.01) | (0.92, 0.02, 0.05) | (0.86, 0.13, 0.04) | |
(0.74, 0.17, 0.04) | (0.69, 0.10, 0.08) | (0.97, 0.05, 0.03) | (0.91, 0.03, 0.04) | (0.88, 0.09, 0.01) | |
(0.80, 0.18, 0.00) | (0.68, 0.35, 0.22) | (0.97, 0.05, 0.01) | (0.92, 0.09, 0.04) | (0.90, 0.08, 0.02) | |
(0.77, 0.18, 0.05) | (0.66, 0.34, 0.35) | (0.97, 0.01, 0.01) | (0.91, 0.03, 0.07) | (0.85, 0.12, 0.06) | |
(0.72, 0.15, 0.11) | (0.61, 0.26, 0.14) | (0.99, 0.00, 0.02) | (0.92, 0.10, 0.04) | (0.85, 0.06, 0.05) | |
(0.74, 0.16, 0.02) | (0.60, 0.25, 0.38) | (0.95, 0.03, 0.00) | (0.94, 0.09, 0.09) | (0.89, 0.09, 0.06) | |
(0.76, 0.20, 0.12) | (0.65, 0.10, 0.26) | (0.98, 0.01, 0.01) | (0.93, 0.05, 0.02) | (0.87, 0.13, 0.03) |
0.32 | 0.10 | 0.15 | 0.25 | 0.18 | |
---|---|---|---|---|---|
| 0.40 | (0.97, 0.03, 0.03) | (0.91, 0.03, 0.07) | (0.90, 0.08, 0.05) | (0.76, 0.18, 0.17) | (0.61, 0.38, 0.00) |
(0.99, 0.02, 0.02) | (0.93, 0.02, 0.02) | (0.87, 0.10, 0.08) | (0.80, 0.15, 0.03) | (0.67, 0.24, 0.26) | |
(0.96, 0.01, 0.00) | (0.94, 0.00, 0.09) | (0.85, 0.07, 0.02) | (0.77, 0.16, 0.11) | (0.67, 0.27, 0.00) | |
(0.97, 0.01, 0.02) | (0.92, 0.03, 0.00) | (0.85, 0.10, 0.06) | (0.73, 0.20, 0.14) | (0.63, 0.30, 0.30) | |
(0.97, 0.03, 0.03) | (0.91, 0.02, 0.04) | (0.85, 0.10, 0.06) | (0.72, 0.15, 0.10) | (0.63, 0.35, 0.28) | |
(0.96, 0.00, 0.05) | (0.90, 0.03, 0.02) | (0.89, 0.09, 0.07) | (0.77, 0.18, 0.03) | (0.67, 0.31, 0.22) | |
(0.95, 0.04, 0.04) | (0.95, 0.08, 0.04) | (0.85, 0.11, 0.02) | (0.72, 0.19, 0.02) | (0.62, 0.21, 0.17) | |
(0.97, 0.00, 0.03) | (0.90, 0.05, 0.03) | (0.88, 0.09, 0.02) | (0.78, 0.19, 0.01) | (0.67, 0.10, 0.30) | |
| 0.30 | (0.90, 0.09, 0.01) | (0.72, 0.18, 0.19) | (0.61, 0.32, 0.00) | (0.98, 0.05, 0.00) | (0.95, 0.08, 0.01) |
(0.85, 0.08, 0.05) | (0.72, 0.15, 0.12) | (0.62, 0.13, 0.39) | (0.97, 0.00, 0.00) | (0.95, 0.05, 0.10) | |
(0.87, 0.06, 0.04) | (0.80, 0.20, 0.10) | (0.69, 0.26, 0.15) | (0.96, 0.03, 0.05) | (0.92, 0.00, 0.01) | |
(0.89, 0.11, 0.03) | (0.77, 0.20, 0.09) | (0.63, 0.35, 0.05) | (0.97, 0.05, 0.00) | (0.91, 0.00, 0.04) | |
(0.90, 0.07, 0.00) | (0.76, 0.18, 0.03) | (0.66, 0.28, 0.35) | (0.95, 0.01, 0.03) | (0.91, 0.04, 0.10) | |
(0.87, 0.13, 0.01) | (0.79, 0.19, 0.02) | (0.67, 0.18, 0.38) | (0.97, 0.00, 0.05) | (0.91, 0.09, 0.10) | |
(0.87, 0.08, 0.09) | (0.78, 0.17, 0.16) | (0.60, 0.32, 0.37) | (0.99, 0.02, 0.05) | (0.93, 0.01, 0.03) | |
(0.89, 0.12, 0.09) | (0.77, 0.16, 0.09) | (0.67, 0.29, 0.27) | (0.95, 0.01, 0.02) | (0.90, 0.06, 0.08) | |
| 0.30 | (0.70, 0.16, 0.04) | (0.63, 0.11, 0.04) | (0.99, 0.04, 0.04) | (0.93, 0.08, 0.00) | (0.86, 0.13, 0.03) |
(0.80, 0.20, 0.05) | (0.66, 0.26, 0.36) | (0.96, 0.05, 0.05) | (0.90, 0.08, 0.08) | (0.90, 0.08, 0.00) | |
(0.74, 0.16, 0.16) | (0.67, 0.32, 0.38) | (0.96, 0.01, 0.00) | (0.93, 0.07, 0.07) | (0.90, 0.11, 0.10) | |
(0.74, 0.16, 0.02) | (0.68, 0.34, 0.39) | (0.97, 0.00, 0.03) | (0.95, 0.00, 0.01) | (0.86, 0.13, 0.05) | |
(0.79, 0.16, 0.03) | (0.69, 0.25, 0.11) | (0.97, 0.00, 0.01) | (0.95, 0.07, 0.03) | (0.88, 0.05, 0.02) | |
(0.70, 0.17, 0.20) | (0.60, 0.20, 0.04) | (0.95, 0.03, 0.03) | (0.91, 0.04, 0.01) | (0.86, 0.15, 0.09) | |
(0.76, 0.15, 0.09) | (0.64, 0.30, 0.22) | (0.95, 0.03, 0.03) | (0.90, 0.06, 0.05) | (0.87, 0.06, 0.10) | |
(0.70, 0.15, 0.18) | (0.63, 0.26, 0.01) | (0.98, 0.05, 0.01) | (0.93, 0.03, 0.04) | (0.85, 0.14, 0.02) |
0.45 | 0.15 | 0.15 | 0.15 | 0.10 | |
---|---|---|---|---|---|
| 0.30 | (0.99, 0.03, 0.00) | (0.93, 0.03, 0.04) | (0.89, 0.11, 0.08) | (0.71, 0.17, 0.20) | (0.68, 0.24, 0.25) |
(0.97, 0.05, 0.02) | (0.92, 0.04, 0.03) | (0.87, 0.13, 0.01) | (0.71, 0.18, 0.06) | (0.61, 0.30, 0.25) | |
(0.96, 0.05, 0.01) | (0.91, 0.08, 0.04) | (0.88, 0.12, 0.00) | (0.71, 0.16, 0.13) | (0.65, 0.11, 0.26) | |
(0.96, 0.00, 0.05) | (0.90, 0.04, 0.02) | (0.85, 0.08, 0.01) | (0.80, 0.16, 0.04) | (0.60, 0.15, 0.02) | |
(0.96, 0.03, 0.03) | (0.93, 0.02, 0.04) | (0.87, 0.10, 0.01) | (0.80, 0.16, 0.19) | (0.67, 0.40, 0.25) | |
(0.97, 0.03, 0.04) | (0.91, 0.09, 0.04) | (0.89, 0.07, 0.05) | (0.74, 0.15, 0.19) | (0.63, 0.16, 0.05) | |
| 0.40 | (0.88, 0.11, 0.09) | (0.80, 0.18, 0.20) | (0.63, 0.16, 0.34) | (0.97, 0.00, 0.01) | (0.91, 0.08, 0.03) |
(0.87, 0.05, 0.08) | (0.75, 0.16, 0.00) | (0.66, 0.35, 0.33) | (0.99, 0.01, 0.05) | (0.93, 0.05, 0.06) | |
(0.87, 0.11, 0.10) | (0.80, 0.16, 0.00) | (0.69, 0.33, 0.19) | (0.99, 0.03, 0.01) | (0.90, 0.09, 0.09) | |
(0.86, 0.13, 0.05) | (0.72, 0.17, 0.08) | (0.68, 0.29, 0.08) | (0.99, 0.01, 0.04) | (0.91, 0.07, 0.09) | |
(0.85, 0.14, 0.04) | (0.78, 0.20, 0.06) | (0.70, 0.13, 0.15) | (0.96, 0.05, 0.05) | (0.93, 0.06, 0.08) | |
(0.90, 0.10, 0.10) | (0.80, 0.16, 0.04) | (0.63, 0.31, 0.25) | (0.98, 0.00, 0.04) | (0.94, 0.00, 0.05) | |
| 0.30 | (0.80, 0.16, 0.01) | (0.66, 0.21, 0.03) | (0.98, 0.02, 0.04) | (0.91, 0.02, 0.02) | (0.90, 0.13, 0.00) |
(0.80, 0.20, 0.20) | (0.63, 0.32, 0.31) | (0.97, 0.00, 0.03) | (0.90, 0.03, 0.05) | (0.87, 0.12, 0.04) | |
(0.76, 0.17, 0.05) | (0.60, 0.30, 0.03) | (0.96, 0.03, 0.05) | (0.94, 0.05, 0.04) | (0.88, 0.13, 0.07) | |
(0.77, 0.15, 0.16) | (0.66, 0.30, 0.12) | (0.95, 0.02, 0.02) | (0.90, 0.02, 0.08) | (0.85, 0.12, 0.10) | |
(0.74, 0.18, 0.05) | (0.67, 0.25, 0.24) | (0.95, 0.02, 0.04) | (0.91, 0.00, 0.05) | (0.86, 0.15, 0.02) | |
(0.72, 0.17, 0.02) | (0.63, 0.23, 0.31) | (0.97, 0.00, 0.02) | (0.92, 0.03, 0.08) | (0.87, 0.06, 0.04) |
0.45 | 0.15 | 0.15 | 0.15 | 0.10 | |
---|---|---|---|---|---|
| 0.30 | (0.95, 0.02, 0.03) | (0.91, 0.04, 0.00) | (0.90, 0.15, 0.04) | (0.74, 0.15, 0.08) | (0.61, 0.14, 0.38) |
(0.97, 0.05, 0.02) | (0.92, 0.04, 0.03) | (0.87, 0.13, 0.01) | (0.71, 0.18, 0.06) | (0.61, 0.30, 0.25) | |
(0.96, 0.05, 0.01) | (0.91, 0.08, 0.04) | (0.88, 0.12, 0.00) | (0.71, 0.16, 0.13) | (0.65, 0.11, 0.26) | |
(0.96, 0.00, 0.05) | (0.90, 0.04, 0.02) | (0.85, 0.08, 0.01) | (0.80, 0.16, 0.04) | (0.60, 0.15, 0.02) | |
(0.96, 0.03, 0.03) | (0.93, 0.02, 0.04) | (0.87, 0.10, 0.01) | (0.80, 0.16, 0.19) | (0.67, 0.40, 0.25) | |
(0.97, 0.03, 0.04) | (0.91, 0.09, 0.04) | (0.89, 0.07, 0.05) | (0.74, 0.15, 0.19) | (0.63, 0.16, 0.05) | |
| 0.40 | (0.85, 0.10, 0.08) | (0.77, 0.19, 0.02) | (0.62, 0.35, 0.17) | (0.96, 0.04, 0.03) | (0.95, 0.06, 0.06) |
(0.87, 0.05, 0.08) | (0.75, 0.16, 0.00) | (0.66, 0.35, 0.33) | (0.99, 0.01, 0.05) | (0.93, 0.05, 0.06) | |
(0.87, 0.11, 0.10) | (0.80, 0.16, 0.00) | (0.69, 0.33, 0.19) | (0.99, 0.03, 0.01) | (0.90, 0.09, 0.09) | |
(0.86, 0.13, 0.05) | (0.72, 0.17, 0.08) | (0.68, 0.29, 0.08) | (0.99, 0.01, 0.04) | (0.91, 0.07, 0.09) | |
(0.85, 0.14, 0.04) | (0.78, 0.20, 0.06) | (0.70, 0.13, 0.15) | (0.96, 0.05, 0.05) | (0.93, 0.06, 0.08) | |
(0.90, 0.10, 0.10) | (0.80, 0.16, 0.04) | (0.63, 0.31, 0.25) | (0.98, 0.00, 0.04) | (0.94, 0.00, 0.05) | |
| 0.30 | (0.74, 0.17, 0.14) | (0.65, 0.19, 0.23) | (0.99, 0.03, 0.01) | (0.92, 0.05, 0.00) | (0.85, 0.06, 0.00) |
(0.80, 0.20, 0.20) | (0.63, 0.32, 0.31) | (0.97, 0.00, 0.03) | (0.90, 0.03, 0.05) | (0.87, 0.12, 0.04) | |
(0.76, 0.17, 0.05) | (0.60, 0.30, 0.03) | (0.96, 0.03, 0.05) | (0.94, 0.05, 0.04) | (0.88, 0.13, 0.07) | |
(0.77, 0.15, 0.16) | (0.66, 0.30, 0.12) | (0.95, 0.02, 0.02) | (0.90, 0.02, 0.08) | (0.85, 0.12, 0.10) | |
(0.74, 0.18, 0.05) | (0.67, 0.25, 0.24) | (0.95, 0.02, 0.04) | (0.91, 0.00, 0.05) | (0.86, 0.15, 0.02) | |
(0.72, 0.17, 0.02) | (0.63, 0.23, 0.31) | (0.97, 0.00, 0.02) | (0.92, 0.03, 0.08) | (0.87, 0.06, 0.04) |
References
- Yu, P.L.; Chen, Y.C. Dynamic multiple criteria decision making in changeable spaces: From habitual domains to innovation dynamics. Ann. Oper. Res. 2012, 197, 201–220. [Google Scholar] [CrossRef]
- Aouni, B.; Colapinto, C.; La Torre, D.; Liuzzi, D.; Marsiglio, S. On Dynamic Multiple Criteria Decision Making Models: A Goal Programming Approach. In Multiple Criteria Decision Making in Finance, Insurance and Investment; Springer International Publishing: Cham, Switzerland, 2015; pp. 31–48. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.S. A Method based on the Dynamic Weighted Geometric Aggregation Operator for Dynamic Hybrid Multi-Attribute Group Decision Making. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2009, 17, 15–33. [Google Scholar] [CrossRef]
- Xu, Z. Multi-period multi-attribute group decision-making under linguistic assessments. Int. J. Gen. Syst. 2009, 38, 823–850. [Google Scholar] [CrossRef]
- Xu, Z. Approaches to Multi-Stage Multi-Attribute Group Decision Making. Int. J. Inf. Technol. Decis. Mak. 2011, 10, 121–146. [Google Scholar] [CrossRef]
- Yang, A. A novel model for dynamic multi- attributes group decision-making based on vague set and its TOPSIS solution. In Proceedings of the 29th Chinese Control Conference, Beijing, China, 29–31 July 2010; pp. 5539–5543. [Google Scholar]
- Su, Z.X.; Chen, M.Y.; Xia, G.P.; Wang, L. An interactive method for dynamic intuitionistic fuzzy multi-attribute group decision making. Expert Syst. Appl. 2011, 38, 15286–15295. [Google Scholar] [CrossRef]
- Liao, H.; Xu, Z.; Xu, J. An approach to hesitant fuzzy multi-stage multi-criterion decision making. Kybernetes 2014, 43, 1447–1468. [Google Scholar] [CrossRef]
- Dutta, B.; Guha, D. Decision Makers’ Opinions Changing Attitude-Driven Consensus Model under Linguistic Environment and Its Application in Dynamic MAGDM Problems. In Granular Computing and Decision-Making: Interactive and Iterative Approaches; Springer International Publishing: Cham, Switzerland, 2015; pp. 73–95. [Google Scholar] [CrossRef]
- Yin, K.; Wang, P.; Jin, X. Dynamic Intuitionistic Fuzzy Multi-Attribute Group Decision-Making Based on Power Geometric Weighted Average Operator and Prediction Model. Symmetry 2018, 10, 536. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Rodriguez, R.M.; Wang, Y.M. A dynamic multi-attribute group emergency decision making method considering experts’ hesitation. Int. J. Comput. Intell. Syst. 2018, 11, 163–182. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wu, M.; Tan, C.; Zhang, T. A random intuitionistic fuzzy factor analysis model for complex multi-attribute large group decision-making in dynamic environments. Fuzzy Optim. Decis. Mak. 2021, 20, 101–127. [Google Scholar] [CrossRef]
- Aydemir, S.B.; Gunduz, S.Y. A novel approach to multi-attribute group decision making based on power neutrality aggregation operator for q-rung orthopair fuzzy sets. Int. J. Intell. Syst. 2021, 36, 1454–1481. [Google Scholar] [CrossRef]
- Li, Y.; Liu, M.; Cao, J.; Wang, X.; Zhang, N. Multi-attribute group decision-making considering opinion dynamics. Expert Syst. Appl. 2021, 184, 115479. [Google Scholar] [CrossRef]
- Ding, Q.; Goh, M.; Wang, Y.M. Interval-valued hesitant fuzzy TODIM method for dynamic emergency responses. Soft Comput. 2021, 25, 8263–8279. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.D.; Ding, X.F. A q-rung orthopair fuzzy non-cooperative game method for competitive strategy group decision-making problems based on a hybrid dynamic experts’ weight determining model. Complex Intell. Syst. 2021, 7, 3077–3092. [Google Scholar] [CrossRef]
- Deb, N.; Sarkar, A.; Biswas, A. Multi-attribute Group Decision Making Through the Development of Dombi Bonferroni Mean Operators Using Dual Hesitant Pythagorean Fuzzy Data, 2022. In Proceedings of Academia-Industry Consortium for Data Science; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Zolfani, S.H.; Maknoon, R.; Zavadskas, E.K. An introduction to Prospective Multiple Attribute Decision Making (PMADM). Technol. Econ. Dev. Econ. 2016, 22, 309–326. [Google Scholar] [CrossRef]
- Baykasoğlu, A.; Gölcük, İ. An Interactive Data-Driven (Dynamic) Multiple Attribute Decision Making Model via Interval Type-2 Fuzzy Functions. Mathematics 2019, 30, 584. [Google Scholar] [CrossRef] [Green Version]
- Baykasoğlu, A.; Gölcük, İ. A dynamic multiple attribute decision making model with learning of fuzzy cognitive maps. Comput. Ind. Eng. 2019, 135, 1063–1076. [Google Scholar] [CrossRef]
- He, Y.; Xu, Z. An Overview on Recent Researches of Uncertain Group Decision Making: Methodology, Framework and Development. Int. J. Inf. Technol. Decis. Mak. 2021, 20, 165–198. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Z.; Su, S.F.; Zhou, W. A comprehensive bibliometric analysis of uncertain group decision making from 1980 to 2019. Inf. Sci. 2021, 547, 328–353. [Google Scholar] [CrossRef]
- Muahmmad, A.; Martino, A. Multi-attribute group decision making based on T-spherical fuzzy soft rough average aggregation operators. Granul. Comput. 2022, 8, 171–207. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K. Intuitionistic fuzzy sets VII ITKR’s Session. Sofia June 1983, 1, 983. [Google Scholar]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Smarandache, F. Neutrosophy: Neutrosophic probability, set, and logic: Analytic synthesis. Synth. Anal. 1998. [Google Scholar]
- Smarandache, F. Neutrosophic set—A generalization of the intuitionistic fuzzy set. In Proceedings of the 2006 IEEE International Conference on Granular Computing, Atlanta, GA, USA, 10–12 May 2006; pp. 38–42. [Google Scholar] [CrossRef] [Green Version]
- Cuong, B.C.; Kreinovich, V. Picture fuzzy sets—A new concept for computational intelligence problems. In Proceedings of the 2013 Third World Congress on Information and Communication Technologies (WICT 2013), Hanoi, Vietnam, 15–18 December 2013; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, T.; Ullah, K.; Khan, Q.; Jan, N. An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Comput. Appl. 2019, 31, 7041–7053. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Yager, R.R. On the theory of bags. Int. J. Gen. Syst. 1986, 13, 23–37. [Google Scholar] [CrossRef]
- Torra, V.; Narukawa, Y. On hesitant fuzzy sets and decision. In Proceedings of the 2009 IEEE international conference on fuzzy Systems, Jeju Island, Rupublic of Korea, 20–24 August 2009; pp. 1378–1382. [Google Scholar]
- Yager, R.R.; Abbasov, A.M. Pythagorean membership grades, complex numbers, and decision making. Int. J. Intell. Syst. 2013, 28, 436–452. [Google Scholar] [CrossRef]
- Yager, R.R. Generalized Orthopair Fuzzy Sets. IEEE Trans. Fuzzy Syst. 2017, 25, 1222–1230. [Google Scholar] [CrossRef]
- Senapati, T.; Yager, R.R. Fermatean fuzzy sets. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 663–674. [Google Scholar] [CrossRef]
- Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
- Molodtsov, D. Soft set theory—First results. Comput. Math. Appl. 1999, 37, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Maji, P.K.; Biswas, R.; Roy, A. Fuzzy soft sets. J. Fuzzy Math. 2001, 9, 589–602. [Google Scholar]
- Sun, B.; Zhang, M.; Wang, T.; Zhang, X. Diversified multiple attribute group decision-making based on multigranulation soft fuzzy rough set and TODIM method. Comput. Appl. Math. 2020, 39, 186. [Google Scholar] [CrossRef]
- Ahmmad, J.; Mahmood, T.; Chinram, R.; Iampan, A. Some average aggregation operators based on spherical fuzzy soft sets and their applications in multi-criteria decision making. AIMS Math. 2021, 6, 7798–7833. [Google Scholar] [CrossRef]
- Keikha, A.; Mishmast Nehi, H. Fuzzified Choquet Integral and its Applications in MADM: A Review and A New Method. Int. J. Fuzzy Syst. 2015, 17, 337–352. [Google Scholar] [CrossRef]
- Donyatalab, Y.; Farrokhizadeh, E.; Seyfi, S.A. Harmonic Mean Aggregation Operators in Spherical Fuzzy Environment and Their Group Decision Making Applications. J. Mult. Valued Log. Soft Comput. 2019, 33, 565–592. [Google Scholar]
- Akram, M.; Khan, A.; Alcantud, J.C.R.; Santos-García, G. A hybrid decision-making framework under complex spherical fuzzy prioritized weighted aggregation operators. Expert Syst. 2021, 38, e12712. [Google Scholar] [CrossRef]
- Guleria, A.; Bajaj, R.K. T-spherical fuzzy soft sets and its aggregation operators with application in decision-making. Sci. Iran. 2021, 28, 1014–1029. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Khan, Q.; Mahmood, T.; Hassan, N. T-Spherical Fuzzy Power Muirhead Mean Operator Based on Novel Operational Laws and Their Application in Multi-Attribute Group Decision Making. IEEE Access 2019, 7, 22613–22632. [Google Scholar] [CrossRef]
- Quek, S.G.; Selvachandran, G.; Munir, M.; Mahmood, T.; Ullah, K.; Son, L.H.; Thong, P.H.; Kumar, R.; Priyadarshini, I. Multi-Attribute Multi-Perception Decision-Making Based on Generalized T-Spherical Fuzzy Weighted Aggregation Operators on Neutrosophic Sets. Mathematics 2019, 7, 780. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.Q.; Chen, T.Y.; Fan, J.P. Similarity Measures of T-Spherical Fuzzy Sets Based on the Cosine Function and Their Applications in Pattern Recognition. IEEE Access 2020, 8, 98181–98192. [Google Scholar] [CrossRef]
1 | 2 | 0 | 0 | 1 | |
1 | 0 | 0 | 2 | 1 | |
2 | 0 | 0 | 1 | 0 | |
0 | 0 | 1 | 2 | 1 | |
2 | 1 | 0 | 2 | 1 | |
0 | 0 | 1 | 2 | 1 | |
2 | 0 | 0 | 1 | 0 | |
0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | |
1 | 1 | 0 | 1 | 0 | |
0 | 1 | 1 | 0 | 1 | |
0 | 1 | 0 | 1 | 1 |
(0.6, 0.1) | (0.0, 0.0) | (0.0, 0.0) | (0.6, 0.2) | (0.0, 0.0) | |
(0.8, 0.1) | (0.7, 0.2) | (0.0, 0.0) | (0.8, 0.1) | (0.0, 0.0) | |
(0.0, 0.0) | (0.5, 0.3) | (0.4, 0.4) | (0.0, 0.0) | (0.8, 0.1) | |
(0.0, 0.0) | (0.9, 0.1) | (0.0, 0.0) | (0.7, 0.2) | (0.6, 0.4) |
(0.83, 0.12, 0.03) | (0.76, 0.12, 0.04) | (0.56, 0.21, 0.12) | (0.16, 0.81, 0.03) | |
---|---|---|---|---|
(0.96, 0.02, 0.01) | (0.82, 0.13, 0.02) | (0.73, 0.12, 0.13) | (0.43, 0.34, 0.15) | |
(0.97, 0.01, 0.01) | (0.91, 0.05, 0.04) | (0.77, 0.14, 0.18) | (0.76, 0.07, 0.02) | |
(0.92, 0.05, 0.02) | (0.56, 0.26, 0.02) | (0.78, 0.23, 0.01) | (0.99, 0.01, 0.00) |
⋯ | ||||
⋯ | ||||
⋯ | ||||
⋯ | ||||
⋯ | ||||
⋮ | ⋮ | ⋮ | ⋱ | ⋮ |
⋯ | ||||
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
⋯ | ||||
⋯ | ||||
⋯ | ||||
⋮ | ⋮ | ⋮ | ⋱ | ⋮ |
⋯ | ||||
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
⋯ | ||||
⋯ | ||||
⋯ | ||||
⋮ | ⋮ | ⋮ | ⋱ | ⋮ |
⋯ |
( , , ) | ( , , ) | |||
---|---|---|---|---|
(0.04485, 0.02494, 0.01918) | (0.24750, 0.00013, 0.00000) | 0.46037 | ||
(0.04485, 0.03093, 0.01353) | (0.24500, 0.00050, 0.00000) | 0.45778 | ||
(0.04347, 0.02355, 0.01740) | (0.23750, 0.00013, 0.00000) | 0.44994 | ||
(0.04623, 0.03866, 0.02030) | (0.24000, 0.00000, 0.00000) | 0.45256 | ||
(0.04347, 0.03480, 0.01535) | (0.23750, 0.00000, 0.00000) | 0.44994 | ||
(0.04140, 0.02513, 0.03286) | (0.24750, 0.00025, 0.00000) | 0.46036 | ||
(0.04416, 0.03383, 0.03286) | (0.24250, 0.00000, 0.00000) | 0.45517 | ||
(0.04623, 0.02632, 0.02610) | (0.24500, 0.00013, 0.00000) | 0.45778 | ||
(0.08742, 0.04534, 0.02625) | (0.22000, 0.00006, 0.00018) | 0.43165 | ||
(0.08554, 0.07266, 0.03873) | (0.22000, 0.00003, 0.00012) | 0.43143 | ||
(0.08460, 0.03580, 0.04295) | (0.21250, 0.00005, 0.00021) | 0.42342 | ||
(0.08930, 0.04844, 0.03147) | (0.21750, 0.00002, 0.00021) | 0.42899 | ||
(0.08836, 0.04117, 0.03873) | (0.21500, 0.00001, 0.00000) | 0.42626 | ||
(0.08836, 0.05570, 0.06293) | (0.21750, 0.00002, 0.00007) | 0.42885 | ||
(0.08742, 0.03580, 0.09440) | (0.22500, 0.00000, 0.00012) | 0.43641 | ||
(0.08930, 0.04773, 0.02662) | (0.21750, 0.00001, 0.00021) | 0.42900 | ||
(0.08010, 0.09444, 0.02802) | (0.23750, −0.00020, −0.00013) | 0.44965 | ||
(0.07740, 0.04843, 0.04670) | (0.24750, −0.00020, −0.00003) | 0.46049 | ||
(0.07920, 0.03970, 0.01935) | (0.24250, −0.00050, −0.00008) | 0.45535 | ||
(0.08100, 0.08475, 0.05322) | (0.24250, −0.00050, −0.00003) | 0.45509 | ||
(0.07650, 0.08233, 0.08467) | (0.24250, −0.00010, −0.00003) | 0.45484 | ||
(0.07650, 0.06296, 0.03387) | (0.25000, 0.00000, −0.00005) | 0.46302 | ||
(0.08010, 0.06054, 0.09193) | (0.23750, −0.00030, 0.00000) | 0.44966 | ||
(0.07830, 0.04671, 0.06290) | (0.24500, −0.00010, −0.00003) | 0.45787 |
0.450521 | |||
0.449652 | |||
0.448642 | |||
0.448302 | |||
0.447825 | |||
0.445317 | |||
0.443153 | |||
0.442324 |
0.498813 | |||
0.497476 | |||
0.493123 | |||
0.491535 | |||
0.490639 | |||
0.489837 | |||
0.486844 |
0.611443 | |||
0.608057 | |||
0.603911 | |||
0.602714 | |||
0.601166 | |||
0.598800 | |||
0.491535 | |||
0.112413 | |||
0.112161 |
0.598936 | |||
0.594738 | |||
0.594109 | |||
0.593653 | |||
0.592304 |
0.748636 | |||
0.745416 | |||
0.745164 | |||
0.716537 | |||
0.622212 | |||
0.152014 | |||
0.150978 | |||
0.150292 | |||
0.028040 |
A | ||||||
---|---|---|---|---|---|---|
-Ranking | -Ranking | -Ranking | -Ranking | -Ranking | -Ranking | |
3 | 3 | × | 9 | × | 9 | |
2 | 2 | × | 8 | 3 | 5 | |
8 | 8 | 2 | 2 | × | 6 | |
6 | 6 | 6 | 5 | × | 8 | |
7 | 7 | 3 | 3 | × | 7 | |
1 | 1 | 1 | 1 | 5 | 3 | |
5 | 5 | 7 | 6 | 1 | 1 | |
4 | 4 | 5 | 4 | 2 | 2 | |
× | × | 4 | 7 | 4 | 4 |
0.596897 | |||
0.591764 | |||
0.591054 | |||
0.590738 | |||
0.585572 |
0.743915 | |||
0.740438 | |||
0.736250 | |||
0.714648 | |||
0.625000 | |||
0.152014 | |||
0.150978 | |||
0.150292 | |||
0.028040 |
A | ||||
---|---|---|---|---|
-Ranking | -Ranking | -Ranking | -Ranking | |
× | 9 | × | 6 | |
3 | 5 | 1 | 7 | |
× | 6 | × | 8 | |
× | 8 | × | 9 | |
× | 7 | × | 2 | |
5 | 3 | 3 | 3 | |
1 | 1 | 4 | 5 | |
2 | 2 | 5 | 4 | |
4 | 4 | 2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Ma, W.; Ma, H. Dynamic Chaotic Multi-Attribute Group Decision Making under Weighted T-Spherical Fuzzy Soft Rough Sets. Symmetry 2023, 15, 307. https://doi.org/10.3390/sym15020307
Zhang F, Ma W, Ma H. Dynamic Chaotic Multi-Attribute Group Decision Making under Weighted T-Spherical Fuzzy Soft Rough Sets. Symmetry. 2023; 15(2):307. https://doi.org/10.3390/sym15020307
Chicago/Turabian StyleZhang, Fu, Weimin Ma, and Hongwei Ma. 2023. "Dynamic Chaotic Multi-Attribute Group Decision Making under Weighted T-Spherical Fuzzy Soft Rough Sets" Symmetry 15, no. 2: 307. https://doi.org/10.3390/sym15020307
APA StyleZhang, F., Ma, W., & Ma, H. (2023). Dynamic Chaotic Multi-Attribute Group Decision Making under Weighted T-Spherical Fuzzy Soft Rough Sets. Symmetry, 15(2), 307. https://doi.org/10.3390/sym15020307