Pump-Probe X-ray Photoemission Spectroscopy of Free-Standing Graphane
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sofo, J.O.; Chaudhari, A.S.; Barber, G.D. Graphane: A Two-Dimensional Hydrocarbon. Phys. Rev. B 2007, 75, 153401. [Google Scholar] [CrossRef] [Green Version]
- Cudazzo, P.; Attaccalite, C.; Tokatly, I.V.; Rubio, A. Strong Charge-Transfer Excitonic Effects and the Bose-Einstein Exciton Condensate in Graphane. Phys. Rev. Lett. 2010, 104, 226804. [Google Scholar] [CrossRef] [Green Version]
- Elias, D.C.; Nair, R.R.; Mohiuddin, T.M.G.; Morozov, S.V.; Blake, P.; Halsall, M.P.; Ferrari, A.C.; Boukhvalov, D.W.; Katsnelson, M.I.; Geim, A.K.; et al. Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane. Science (1979) 2009, 323, 610–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Z.; Shang, J.; Lim, S.; Li, D.; Xiong, Q.; Shen, Z.; Lin, J.; Yu, T. Modulating the Electronic Structures of Graphene by Controllable Hydrogenation. Appl. Phys. Lett. 2010, 97, 233111. [Google Scholar] [CrossRef]
- Burgess, J.S.; Matis, B.R.; Robinson, J.T.; Bulat, F.A.; Keith Perkins, F.; Houston, B.H.; Baldwin, J.W. Tuning the Electronic Properties of Graphene by Hydrogenation in a Plasma Enhanced Chemical Vapor Deposition Reactor. Carbon 2011, 49, 4420–4426. [Google Scholar] [CrossRef]
- Felten, A.; McManus, D.; Rice, C.; Nittler, L.; Pireaux, J.-J.; Casiraghi, C. Insight into Hydrogenation of Graphene: Effect of Hydrogen Plasma Chemistry. Appl. Phys. Lett. 2014, 105, 183104. [Google Scholar] [CrossRef]
- Zhao, F.; Raitses, Y.; Yang, X.; Tan, A.; Tully, C.G. High Hydrogen Coverage on Graphene via Low Temperature Plasma with Applied Magnetic Field. Carbon 2021, 177, 244–251. [Google Scholar] [CrossRef]
- Haberer, D.; Vyalikh, D.V.; Taioli, S.; Dora, B.; Farjam, M.; Fink, J.; Marchenko, D.; Pichler, T.; Ziegler, K.; Simonucci, S.; et al. Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene. Nano Lett. 2010, 10, 3360–3366. [Google Scholar] [CrossRef] [PubMed]
- Paris, A.; Verbitskiy, N.; Nefedov, A.; Wang, Y.; Fedorov, A.; Haberer, D.; Oehzelt, M.; Petaccia, L.; Usachov, D.; Vyalikh, D.; et al. Kinetic Isotope Effect in the Hydrogenation and Deuteration of Graphene. Adv. Funct. Mater. 2013, 23, 1628–1635. [Google Scholar] [CrossRef] [Green Version]
- Ryu, S.; Han, M.Y.; Maultzsch, J.; Heinz, T.F.; Kim, P.; Steigerwald, M.L.; Brus, L.E. Reversible Basal Plane Hydrogenation of Graphene. Nano Lett. 2008, 8, 4597–4602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balog, R.; Andersen, M.; Jørgensen, B.; Sljivancanin, Z.; Hammer, B.; Baraldi, A.; Larciprete, R.; Hofmann, P.; Hornekær, L.; Lizzit, S. Controlling Hydrogenation of Graphene on Ir(111). ACS Nano 2013, 7, 3823–3832. [Google Scholar] [CrossRef]
- Whitener, K.E.; Lee, W.K.; Campbell, P.M.; Robinson, J.T.; Sheehan, P.E. Chemical Hydrogenation of Single-Layer Graphene Enables Completely Reversible Removal of Electrical Conductivity. Carbon 2014, 72, 348–353. [Google Scholar] [CrossRef]
- Son, J.; Lee, S.; Kim, S.J.; Park, B.C.; Lee, H.-K.; Kim, S.; Kim, J.H.; Hong, B.H.; Hong, J. Hydrogenated Monolayer Graphene with Reversible and Tunable Wide Band Gap and Its Field-Effect Transistor. Nat. Commun. 2016, 7, 13261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panahi, M.; Solati, N.; Kaya, S. Modifying Hydrogen Binding Strength of Graphene. Surf. Sci. 2019, 679, 24–30. [Google Scholar] [CrossRef]
- Abdelnabi, M.M.S.; Blundo, E.; Betti, M.G.; Cavoto, G.; Placidi, E.; Polimeni, A.; Ruocco, A.; Hu, K.; Ito, Y.; Mariani, C. Towards Free-Standing Graphane: Atomic Hydrogen and Deuterium Bonding to Nano-Porous Graphene. Nanotechnology 2021, 32, 035707. [Google Scholar] [CrossRef] [PubMed]
- Abdelnabi, M.M.S.; Izzo, C.; Blundo, E.; Betti, M.G.; Sbroscia, M.; di Bella, G.; Cavoto, G.; Polimeni, A.; García-Cortés, I.; Rucandio, I.; et al. Deuterium Adsorption on Free-Standing Graphene. Nanomaterials 2021, 11, 130. [Google Scholar] [CrossRef]
- Betti, M.G.; Blundo, E.; de Luca, M.; Felici, M.; Frisenda, R.; Ito, Y.; Jeong, S.; Marchiani, D.; Mariani, C.; Polimeni, A.; et al. Homogeneous Spatial Distribution of Deuterium Chemisorbed on Free-Standing Graphene. Nanomaterials 2022, 12, 2613. [Google Scholar] [CrossRef]
- Betti, M.G.; Placidi, E.; Izzo, C.; Blundo, E.; Polimeni, A.; Sbroscia, M.; Avila, J.; Dudin, P.; Hu, K.; Ito, Y.; et al. Gap Opening in Double-Sided Highly Hydrogenated Free-Standing Graphene. Nano Lett. 2022, 22, 2971–2977. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Qiu, H.-J.; Fujita, T.; Tanabe, Y.; Tanigaki, K.; Chen, M. Bicontinuous Nanoporous N-Doped Graphene for the Oxygen Reduction Reaction. Adv. Mater. 2014, 26, 4145–4150. [Google Scholar] [CrossRef]
- Tanabe, Y.; Ito, Y.; Sugawara, K.; Hojo, D.; Koshino, M.; Fujita, T.; Aida, T.; Xu, X.; Huynh, K.K.; Shimotani, H.; et al. Electric Properties of Dirac Fermions Captured into 3D Nanoporous Graphene Networks. Adv. Mater. 2016, 28, 10304–10310. [Google Scholar] [CrossRef] [Green Version]
- di Bernardo, I.; Avvisati, G.; Mariani, C.; Motta, N.; Chen, C.; Avila, J.; Asensio, M.C.; Lupi, S.; Ito, Y.; Chen, M.; et al. Two-Dimensional Hallmark of Highly Interconnected Three-Dimensional Nanoporous Graphene. ACS Omega 2017, 2, 3691–3697. [Google Scholar] [CrossRef] [Green Version]
- di Bernardo, I.; Avvisati, G.; Chen, C.; Avila, J.; Asensio, M.C.; Hu, K.; Ito, Y.; Hines, P.; Lipton-Duffin, J.; Rintoul, L.; et al. Topology and Doping Effects in Three-Dimensional Nanoporous Graphene. Carbon 2018, 131, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Tanabe, Y.; Ito, Y.; Sugawara, K.; Koshino, M.; Kimura, S.; Naito, T.; Johnson, I.; Takahashi, T.; Chen, M. Dirac Fermion Kinetics in 3D Curved Graphene. Adv. Mater. 2020, 32, 2005838. [Google Scholar] [CrossRef]
- Betti, M.G.; Biasotti, M.; Boscá, A.; Calle, F.; Carabe-Lopez, J.; Cavoto, G.; Chang, C.; Chung, W.; Cocco, A.G.; Colijn, A.P.; et al. A Design for an Electromagnetic Filter for Precision Energy Measurements at the Tritium Endpoint. Prog. Part. Nucl. Phys. 2019, 106, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Gierz, I.; Petersen, J.C.; Mitrano, M.; Cacho, C.; Turcu, I.C.E.; Springate, E.; Stöhr, A.; Köhler, A.; Starke, U.; Cavalleri, A. Snapshots of Non-Equilibrium Dirac Carrier Distributions in Graphene. Nat. Mater. 2013, 12, 1119–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Strait, J.H.; George, P.A.; Shivaraman, S.; Shields, V.B.; Chandrashekhar, M.; Hwang, J.; Rana, F.; Spencer, M.G.; Ruiz-Vargas, C.S.; et al. Ultrafast Relaxation Dynamics of Hot Optical Phonons in Graphene. Appl. Phys. Lett. 2010, 96, 081917. [Google Scholar] [CrossRef] [Green Version]
- Ulstrup, S.; Christian Johannsen, J.; Crepaldi, A.; Cilento, F.; Zacchigna, M.; Cacho, C.; Chapman, R.T.; Springate, E.; Fromm, F.; Raidel, C.; et al. Ultrafast Electron Dynamics in Epitaxial Graphene Investigated with Time- and Angle-Resolved Photoemission Spectroscopy. J. Phys. Condens. Matter 2015, 27, 164206. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Wang, R.; Ma, S.; Zhou, L.; Shen, Y.R.; Tian, C. Theoretical Analysis and Simulation of Pulsed Laser Heating at Interface. J. Appl. Phys. 2018, 123, 025301. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science (1979) 2008, 320, 1308. [Google Scholar] [CrossRef] [Green Version]
- Chien, S.-K.; Yang, Y.-T.; Chen, C.-K. Influence of Hydrogen Functionalization on Thermal Conductivity of Graphene: Nonequilibrium Molecular Dynamics Simulations. Appl. Phys. Lett. 2011, 98, 033107. [Google Scholar] [CrossRef]
- Mortazavi, B.; Madjet, M.E.; Shahrokhi, M.; Ahzi, S.; Zhuang, X.; Rabczuk, T. Nanoporous Graphene: A 2D Semiconductor with Anisotropic Mechanical, Optical and Thermal Conduction Properties. Carbon 2019, 147, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Song, B.; Gu, H.; Zhu, S.; Jiang, H.; Chen, X.; Zhang, C.; Liu, S. Broadband Optical Properties of Graphene and HOPG Investigated by Spectroscopic Mueller Matrix Ellipsometry. Appl. Surf. Sci. 2018, 439, 1079–1087. [Google Scholar] [CrossRef]
- Neek-Amal, M.; Peeters, F.M. Lattice Thermal Properties of Graphane: Thermal Contraction, Roughness, and Heat Capacity. Phys. Rev. B 2011, 83, 235437. [Google Scholar] [CrossRef] [Green Version]
- Kashani, H.; Ito, Y.; Han, J.; Liu, P.; Chen, M. Extraordinary Tensile Strength and Ductility of Scalable Nanoporous Graphene. Sci. Adv. 2019, 5, eaat6951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Miyamoto, Y.; Rubio, A. Laser-Induced Preferential Dehydrogenation of Graphane. Phys. Rev. B 2012, 85, 201409. [Google Scholar] [CrossRef] [Green Version]
- Curcio, D.; Pakdel, S.; Volckaert, K.; Miwa, J.A.; Ulstrup, S.; Lanatà, N.; Bianchi, M.; Kutnyakhov, D.; Pressacco, F.; Brenner, G.; et al. Ultrafast Electronic Linewidth Broadening in the C 1s Core Level of Graphene. Phys. Rev. B 2021, 104, L161104. [Google Scholar] [CrossRef]
- Pozzo, M.; Alfè, D.; Lacovig, P.; Hofmann, P.; Lizzit, S.; Baraldi, A. Thermal Expansion of Supported and Freestanding Graphene: Lattice Constant versus Interatomic Distance. Phys. Rev. Lett. 2011, 106, 135501. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, E.; Galli, L.; Miniussi, E.; Morri, M.; Panighel, M.; Ricci, M.; Lacovig, P.; Lizzit, S.; Baraldi, A. Layer-Dependent Debye Temperature and Thermal Expansion of Ru(0001) by Means of High-Energy Resolution Core-Level Photoelectron Spectroscopy. Phys. Rev. B 2010, 82, 195420. [Google Scholar] [CrossRef]
- Ito, Y.; Cong, W.; Fujita, T.; Tang, Z.; Chen, M. High Catalytic Activity of Nitrogen and Sulfur Co-Doped Nanoporous Graphene in the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2015, 54, 2131–2136. [Google Scholar] [CrossRef]
- Ito, Y.; Tanabe, Y.; Han, J.; Fujita, T.; Tanigaki, K.; Chen, M. Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization. Adv. Mater. 2015, 27, 4302–4307. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Tanabe, Y.; Qiu, H.-J.; Sugawara, K.; Heguri, S.; Tu, N.H.; Huynh, K.K.; Fujita, T.; Takahashi, T.; Tanigaki, K.; et al. High-Quality Three-Dimensional Nanoporous Graphene. Angew. Chem. Int. Ed. 2014, 53, 4822–4826. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Qin, L.; Zhang, S.; Zheng, J.; Sun, J.; Ito, Y.; Wu, Y. Building a Reactive Armor Using S-Doped Graphene for Protecting Potassium Metal Anodes from Oxygen Crossover in K–O 2 Batteries. ACS Energy Lett. 2020, 5, 1788–1793. [Google Scholar] [CrossRef]
- Bischler, U.; Bertel, E. Simple Source of Atomic Hydrogen for Ultrahigh Vacuum Applications. J. Vac. Sci. Technol. A Vac. Surf. Film. 1993, 11, 458–460. [Google Scholar] [CrossRef]
- Costantini, R.; Stredansky, M.; Cvetko, D.; Kladnik, G.; Verdini, A.; Sigalotti, P.; Cilento, F.; Salvador, F.; de Luisa, A.; Benedetti, D.; et al. ANCHOR-SUNDYN: A Novel Endstation for Time Resolved Spectroscopy at the ALOISA Beamline. J. Electron Spectros. Relat. Phenom. 2018, 229, 7–12. [Google Scholar] [CrossRef]
- Costantini, R.; Cilento, F.; Salvador, F.; Morgante, A.; Giorgi, G.; Palummo, M.; Dell’Angela, M. Photo-Induced Lattice Distortion in 2H-MoTe 2 Probed by Time-Resolved Core Level Photoemission. Faraday Discuss. 2022, 236, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Costantini, R.; Faber, R.; Cossaro, A.; Floreano, L.; Verdini, A.; Hӓttig, C.; Morgante, A.; Coriani, S.; Dell’Angela, M. Picosecond Timescale Tracking of Pentacene Triplet Excitons with Chemical Sensitivity. Commun. Phys. 2019, 2, 56. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costantini, R.; Marchiani, D.; Betti, M.G.; Mariani, C.; Jeong, S.; Ito, Y.; Morgante, A.; Dell’Angela, M. Pump-Probe X-ray Photoemission Spectroscopy of Free-Standing Graphane. Condens. Matter 2023, 8, 31. https://doi.org/10.3390/condmat8020031
Costantini R, Marchiani D, Betti MG, Mariani C, Jeong S, Ito Y, Morgante A, Dell’Angela M. Pump-Probe X-ray Photoemission Spectroscopy of Free-Standing Graphane. Condensed Matter. 2023; 8(2):31. https://doi.org/10.3390/condmat8020031
Chicago/Turabian StyleCostantini, Roberto, Dario Marchiani, Maria Grazia Betti, Carlo Mariani, Samuel Jeong, Yoshikazu Ito, Alberto Morgante, and Martina Dell’Angela. 2023. "Pump-Probe X-ray Photoemission Spectroscopy of Free-Standing Graphane" Condensed Matter 8, no. 2: 31. https://doi.org/10.3390/condmat8020031
APA StyleCostantini, R., Marchiani, D., Betti, M. G., Mariani, C., Jeong, S., Ito, Y., Morgante, A., & Dell’Angela, M. (2023). Pump-Probe X-ray Photoemission Spectroscopy of Free-Standing Graphane. Condensed Matter, 8(2), 31. https://doi.org/10.3390/condmat8020031