Wide Use of Hyaluronic Acid in the Process of Wound Healing—A Rapid Review
Abstract
:1. Introduction
2. HA in Selected Fields of Medicine
2.1. Literature Selection
2.2. HA in the Management of Hard-to-Heal Wounds
2.3. HA in Ophthalmology
2.4. HA in Otorhinolaryngology
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valachová, K.; Hassan, M.E.; Šoltés, L. Hyaluronan: Sources, Structure, Features and Applications. Molecules 2024, 29, 739. [Google Scholar] [CrossRef]
- Liao, Y.H.; Jones, S.A.; Forbes, B.; Martin, G.P.; Brown, M.B. Hyaluronan: Pharmaceutical characterization and drug delivery. Drug Deliv. 2005, 12, 327–342. [Google Scholar] [CrossRef]
- Kobayashi, T.; Chanmee, T.; Itano, N. Hyaluronan: Metabolism and Function. Biomolecules 2020, 10, 1525. [Google Scholar] [CrossRef]
- Yang, H.; Song, L.; Zou, Y.; Sun, D.; Wang, L.; Yu, Z.; Guo, J. Role of Hyaluronic Acids and Potential as Regenerative Biomaterials in Wound Healing. ACS Appl. Bio Mater. 2021, 4, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Sahana, T.G.; Rekha, P.D. Biopolymers: Applications in wound healing and skin tissue engineering. Mol. Biol. Rep. 2018, 45, 2857–2867. [Google Scholar] [CrossRef]
- Bourguignon, L.Y.W. Matrix hyaluronan-activated CD44 signaling promotes keratinocyte activities and improves abnormal epidermal functions. Am. J. Pathol. 2014, 184, 1912–1919. [Google Scholar] [CrossRef] [PubMed]
- Juncan, A.M.; Moisă, D.G.; Santini, A.; Morgovan, C.; Rus, L.L.; Vonica-Tincu, A.L.; Loghin, F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules 2021, 26, 4429. [Google Scholar] [CrossRef]
- Dovedytis, M.; Zhuo, J.L.; Bartlett, S. Hyaluronic acid and its biomedical applications: A review. Eng. Regen. 2020, 1, 102–113. [Google Scholar] [CrossRef]
- John, H.E.; Price, R.D. Perspectives in the selection of hyaluronic acid fillers for facial wrinkles and aging skin. Patient Prefer. Adherence 2009, 3, 225–230. [Google Scholar]
- Sutherland, I. Novel and established applications of microbial polysaccharides. Trends Biotechnol. 1988, 16, 41–46. [Google Scholar] [CrossRef]
- Scott, J.E. Supramolecular organization of extracellular matrix glycosaminglycans, in vitro and in the tissues. FASEB J. 1992, 6, 2639–2645. [Google Scholar] [CrossRef] [PubMed]
- Fraser, J.R.; Laurent, T.C.; Laurent, U.B. Hyaluronan: Its nature, distribution, functions and turnover. J. Intern. Med. 1997, 242, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Graça, M.F.P.; Miguel, S.P.; Cabral, C.S.D.; Correia, I.J. Hyaluronic acid-Based wound dressings: A review. Carbohydr. Polym. 2020, 241, 116364. [Google Scholar] [CrossRef]
- Cortes, H.; Caballero-Florán, I.H.; Mendoza-Muñoz, N.; Córdova-Villanueva, E.N.; Escutia-Guadarrama, L.; Figueroa-González, G.; Reyes-Hernández, O.D.; González-Del Carmen, M.; Varela-Cardoso, M.; Magaña, J.J.; et al. Hyaluronic acid in wound dressings. Cell Mol. Biol. 2020, 66, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Graciela, C.Q.; José Juan, E.C.; Gieraldin, C.L.; Xóchitl Alejandra, P.M.; Gabriel, A.Á. Hyaluronic Acid-Extraction Methods, Sources and Applications. Polymers 2023, 15, 3473. [Google Scholar] [CrossRef] [PubMed]
- Shikina, E.V.; Kovalevsky, R.A.; Shirkovskaya, A.I.; Toukach, P.V. Prospective bacterial and fungal sources of hyaluronic acid: A review. Comput. Struct. Biotechnol. J. 2022, 20, 6214–6236. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.G.; Azzoni, A.R.; Santana, M.H.A.; Petrides, D. Techno-Economic Analysis of a Hyaluronic Acid Production Process Utilizing Streptococcal Fermentation. Processes 2021, 9, 241. [Google Scholar] [CrossRef]
- Sze, J.H.; Brownlie, J.C.; Love, C.A. Biotechnological production of hyaluronic acid: A mini review. 3 Biotech 2016, 1, 67. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Wang, B.; Tang, X.; Mao, B.; Zhang, Q.; Zhang, T.; Zhao, J.; Cui, S.; Chen, W. Absorption, metabolism, and functions of hyaluronic acid and its therapeutic prospects in combination with microorganisms: A review. Carbohydr. Polym. 2023, 299, 120153. [Google Scholar] [CrossRef]
- Burdick, J.A.; Prestwich, G.D. Hyaluronic Acid Hydrogels for Biomedical Applications. Adv. Mater. 2011, 23, H41–H56. [Google Scholar] [CrossRef]
- Zhu, X.; Olsson, M.M.; Bajpai, R.; Järbrink, K.; Tang, W.E.; Car, J. Health-related quality of life and chronic wound characteristics among patients with chronic wounds treated in primary care: A cross-sectional study in Singapore. Int. Wound J. 2022, 19, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xie, M.; Luo, W.; Zhou, Q.; Li, C.; Liu, Y.; Hu, A. Quality of Life and Its Influencing Factors in Chinese Patients with Chronic Wounds. Adv. Skin. Wound Care 2022, 35, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, H.N.; Hardman, M.J. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 2020, 10, 200223. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, L.; Cacciatore, I.; Costantini, E.; Dimmito, M.P.; Serra, F.; Di Stefano, A.; Reale, M. Wound-Healing Promotion and Anti-Inflammatory Properties of Carvacrol Prodrugs/Hyaluronic Acid Formulations. Pharmaceutics 2022, 14, 1468. [Google Scholar] [CrossRef] [PubMed]
- Alven, S.; Aderibigbe, B.A. Hyaluronic Acid-Based Scaffolds as Potential Bioactive Wound Dressings. Polymers 2021, 13, 2102. [Google Scholar] [CrossRef] [PubMed]
- Dereure, O.; Mikosinki, J.; Zegota, Z.; Allaert, F.A. RCT to evaluate a hyaluronic acid containing gauze pad in leg ulcers of venous or mixed aetiology. J. Wound Care 2012, 21, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Humbert, P.; Mikosinki, J.; Benchikhi, H.; Allaert, F.A. Efficacy and safety of a gauze pad containing hyaluronic acid in treatment of leg ulcers of venous or mixed origin: A double-blind, randomised, controlled trial. Int. Wound J. 2013, 10, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Khelfi, A. Therapeutic Enzymes Used for the Treatment of Non-Deficiency Diseases. In Research Advancements in Pharmaceutical, Nutritional, and Industrial Enzymology; IGI Global: Hershey, PA, USA, 2018; pp. 46–70. [Google Scholar]
- Zerbinati, N.; Esposito, C.; Cipolla, G.; Calligaro, A.; Monticelli, D.; Martina, V.; Golubovic, M.; Binic, I.; Sigova, J.; Gallo, A.L.; et al. Chemical and mechanical characterization of hyaluronic acid hydrogel cross-linked with polyethylen glycol and its use in dermatology. Dermatol. Ther. 2020, 33, e13747. [Google Scholar] [CrossRef]
- Longinotti, C. The use of hyaluronic acid based dressings to treat burns: A review. Burns Trauma 2014, 2, 162. [Google Scholar] [CrossRef]
- Barrera Oro, F.; Sikka, R.S.; Wolters, B.; Graver, R.; Boyd, J.L.; Nelson, B.; Swiontkowski, M.F. Autograft versus allograft: An economic cost comparison of anterior cruciate ligament reconstruction. Arthroscopy 2011, 27, 1219–1225. [Google Scholar]
- Simões, D.; Miguel, S.P.; Ribeiro, M.P.; Coutinho, P.; Mendonça, A.G.; Correia, I.J. Recent advances on antimicrobial wound dressing: A review. Eur. J. Pharm. Biopharm. 2018, 127, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.P.; Nguyen, L.V.H.; Tran, N.M.P.; Nguyen, D.T.; Nguyen, T.N.T.; Tran, H.A.; Dang, N.N.T.; Vo, T.V.; Nguyen, T.H. The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109670. [Google Scholar] [CrossRef] [PubMed]
- Mahedia, M.; Shah, N.; Amirlak, B. Clinical Evaluation of Hyaluronic Acid Sponge with Zinc versus Placebo for Scar Reduction after Breast Surgery. Plast. Reconstr. Surg. Glob. Open 2016, 4, e791. [Google Scholar] [CrossRef] [PubMed]
- Price, R.D.; Berry, M.G.; Navsaria, H.A. Hyaluronic acid: The scientific and clinical evidence. J. Plast. Reconstr. Aesthetic Surg. 2007, 60, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- Taddeucci, P.; Pianigiani, E.; Colletta, V.; Torasso, F.; Andreassi, L.; Andreassi, A. An evaluation of Hyalofill-F plus compression bandaging in the treatment of chronic venous ulcers. J Wound Care. 2004, 13, 202–204. [Google Scholar] [CrossRef] [PubMed]
- Chircov, C.; Grumezescu, A.; Bejenaru, L. Hyaluronic acid-based scaffolds for tissue engineering. Rom. J. Morphol. Embryol. 2018, 59, 71–76. [Google Scholar]
- Li, H.; Xue, Y.; Jia, B.; Bai, Y.; Zuo, Y.; Wang, S.; Zhao, Y.; Yang, W.; Tang, H. The preparation of hyaluronic acid grafted pullulan polymers and their use in the formation of novel biocompatible wound healing film. Carbohydr. Polym. 2018, 188, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, D.; Wang, M.; Du, G.; Chen, J. Preparation and characterization of sponge-like composites by cross-linking hyaluronic acid and carboxymethylcellulose sodium with adipic dihydrazide. Eur. Polym. J. 2007, 43, 2672–2681. [Google Scholar] [CrossRef]
- Orellana, S.L.; Giacaman, A.; Pavicic, F.; Vidal, A.; Moreno-Villoslada, I.; Concha, M. Relevance of charge balance and hyaluronic acid on alginate-chitosan sponge microstructure and its influence on fibroblast growth. J. Biomed. Mater. Res. A 2016, 104, 2537–2543. [Google Scholar] [CrossRef]
- Bai, Q.; Gao, Q.; Hu, F.; Zheng, C.; Chen, W.; Sun, N.; Liu, J.; Zhang, Y.; Wu, X.; Lu, T. Chitosan and hyaluronic-based hydrogels could promote the infected wound healing. Int. J. Biol. Macromol. 2023, 232, 123271. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, X.; Xu, L.; Lu, H.; Chen, Y.; Wu, C.; Hu, P. A self-healing hydrogel based on crosslinked hyaluronic acid and chitosan to facilitate diabetic wound healing. Int. J. Biol. Macromol. 2022, 220, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.-F.; Wang, C.-T.; Chen, Y.-H.; Chien, C.-M.; Lin, S.-D.; Lai, C.-S.; Wang, C.-J.; Kuo, Y.-R. Hyaluronic Acid-Povidone-Iodine Compound Facilitates Diabetic Wound Healing in a Streptozotocin-Induced Diabetes Rodent Model. Plast. Reconstr. Surg. 2019, 143, 1371–1382. [Google Scholar] [CrossRef] [PubMed]
- Sobotka, L.; Smahelova, A.; Pastorova, J.; Kusalova, M. A case report of the treatment of diabetic foot ulcers using a sodium hyaluronate and iodine complex. Int. J. Low. Extrem. Wounds 2007, 6, 143–147. [Google Scholar] [CrossRef]
- Hemshekhar, M.; Thushara, R.M.; Chandranayaka, S.; Sherman, L.S.; Kemparaju, K.; Girish, K.S. Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. Int. J. Biol. Macromol. 2016, 86, 917–928. [Google Scholar] [CrossRef] [PubMed]
- de Angelis, B.; D’Autilio, M.F.L.M.; Orlandi, F.; Pepe, G.; Garcovich, S.; Scioli, M.G.; Orlandi, A.; Cervelli, V.; Gentile, P. Wound Healing: In Vitro and In Vivo Evaluation of a Bio-Functionalized Scaffold Based on Hyaluronic Acid and Platelet-Rich Plasma in Chronic Ulcers. J. Clin. Med. 2019, 8, 1486. [Google Scholar] [CrossRef]
- Kartika, R.W.; Alwi, I.; Suyatna, F.D.; Yunir, E.; Waspadji, S.; Immanuel, S.; Bardosono, S.; Sungkar, S.; Rachmat, J.; Hediyati, M.; et al. Wound Healing in Diabetic Foot Ulcer Patients Using Combined Use of Platelet Rich Fibrin and Hyaluronic Acid, Platelet Rich Fibrin and Placebo: An Open Label, Randomized Controlled Trial. Acta Med. Indones. 2021, 53, 268–275. [Google Scholar]
- Su, Z.; Ma, H.; Wu, Z.; Zeng, H.; Li, Z.; Wang, Y.; Liu, G.; Xu, B.; Lin, Y.; Zhang, P.; et al. Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 44, 440–448. [Google Scholar] [CrossRef]
- Catanzano, O.; D’Esposito, V.; Formisano, P.; Boateng, J.S.; Quaglia, F. Composite Alginate-Hyaluronan Sponges for the Delivery of Tranexamic Acid in Postextractive Alveolar Wounds. J. Pharm. Sci. 2018, 107, 654–661. [Google Scholar] [CrossRef]
- Dereure, O.; Czubek, M.; Combemale, P. Efficacy and safety of hyaluronic acid in treatment of leg ulcers: A double-blind RCT. J. Wound Care 2012, 21, 131–139. [Google Scholar] [CrossRef]
- Paghetti, A.; Bellingeri, A.; Pomponio, G.; Sansoni, J.; Paladino, D. Efficacia dell’acido ialuronico associato alla sulfadiazina argentica (Connettivina Plus) nel trattamento delle lesioni da pressione: Uno studio di coorte osservazionale prospettico [Topic efficacy of ialuronic acid associated with argentic sulphadiazine (Connettivina Plus) in the treatment of pressure sores: A prospective observational cohort study]. Prof. Inferm. 2009, 62, 67–77. [Google Scholar] [PubMed]
- Maggio, G.; Armenio, A.; Ruccia, F.; Giglietto, D.; Pascone, M.; Ribatti, D. A new protocol for the treatment of the chronic venous ulcers of the lower limb. Clin. Exp. Med. 2012, 12, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Abbruzzese, L.; Rizzo, L.; Fanelli, G.; Tedeschi, A.; Scatena, A.; Goretti, C.; Macchiarini, S.; Piaggesi, A. Effectiveness and safety of a novel gel dressing in the management of neuropathic leg ulcers in diabetic patients: A prospective double-blind randomized trial. Int. J. Low. Extrem. Wounds 2009, 8, 134–140. [Google Scholar] [CrossRef] [PubMed]
- de Caridi, G.; Massara, M.; Acri, I.; Zavettieri, S.; Grande, R.; Butrico, L.; de Franciscis, S.; Serra, R. Trophic effects of polynucleotides and hyaluronic acid in the healing of venous ulcers of the lower limbs: A clinical study. Int. Wound J. 2016, 13, 754. [Google Scholar] [CrossRef] [PubMed]
- Cassino, R.; Ricci, E. Effectiveness of topical application of amino acids to chronic wounds: A prospective observational study. J. Wound Care 2010, 19, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Segreto, F.; Carotti, S.; Marangi, G.F.; Francesconi, M.; Scaramuzzino, L.; Gratteri, M.; Caldaria, E.; Morini, S.; Persichetti, P. The use of acellular porcine dermis, hyaluronic acid and polynucleotides in the treatment of cutaneous ulcers: Single blind randomised clinical trial. Int. Wound J. 2020, 17, 1702–1708. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, R.; Wang, J.; Ruan, S.; Lin, Z.; Xin, Q.; Yang, R.; Xie, J. Porcine acellular dermal matrix accelerates wound healing through miR-124-3p.1 and miR-139-5p. Cytotherapy 2020, 22, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lv, L.; Mamat, M.; Chen, Z.; Liu, L.; Wang, Z. Xenogenic (porcine) acellular dermal matrix is useful for the wound healing of severely damaged extremities. Exp. Ther. Med. 2014, 7, 621–624. [Google Scholar] [CrossRef] [PubMed]
- You, H.J.; Han, S.K.; Rhie, J.W. Randomised controlled clinical trial for autologous fibroblast-hyaluronic acid complex in treating diabetic foot ulcers. J. Wound Care 2014, 23, 521–530. [Google Scholar] [CrossRef]
- Çetinkalp, Ş.; Gökçe, E.H.; Şimşir, I.Y.; Tuncay Tanrıverdi, S.; Doğan, F.; Biray Avcı, Ç.; Eroğlu, İ.; Utku, T.; Gündüz, C.; Özer, Ö. Comparative Evaluation of Clinical Efficacy and Safety of Collagen Laminin–Based Dermal Matrix Combined with Resveratrol Microparticles (Dermalix) and Standard Wound Care for Diabetic Foot Ulcers. Int. J. Low. Extrem. Wounds 2021, 20, 217–226. [Google Scholar] [CrossRef]
- Nichols, J.J.; Lievens, C.W.; Bloomenstein, M.R.; Liu, H.; Simmons, P.; Vehige, J. Dual-Polymer Drops, Contact Lens Comfort, and Lid Wiper Epitheliopathy. Optom. Vis. Sci. 2016, 93, 979–986. [Google Scholar] [CrossRef]
- Vagge, A.; Giannaccare, G.; Traverso, C.E. Comparison of the Efficacy of Topical Chloramphenicol 0.5%-Betamethasone 0.2% (CB) and CB Associated with Sodium Hyaluronate/Trehalose/Carbomer Gel Following Strabismus Surgery. J. Ocul. Pharmacol. Ther. 2019, 35, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Labetoulle, M.; Chiambaretta, F.; Shirlaw, A.; Leaback, R.; Baudouin, C. Osmoprotectants, carboxymethylcellulose and hyaluronic acid multi-ingredient eye drop: A randomised controlled trial in moderate to severe dry eye. Eye 2017, 31, 1409–1416, Erratum in Eye 2017, 31, 1512. [Google Scholar] [CrossRef] [PubMed]
- Lambiase, A.; Sullivan, B.D.; Schmidt, T.A.; Sullivan, D.A.; Jay, G.D.; Truitt, E.R., 3rd; Bruscolini, A.; Sacchetti, M.; Mantelli, F. A Two-Week, Randomized, Double-masked Study to Evaluate Safety and Efficacy of Lubricin (150 μg/mL) Eye Drops Versus Sodium Hyaluronate (HA) 0.18% Eye Drops (Vismed®) in Patients with Moderate Dry Eye Disease. Ocul. Surf. 2017, 15, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Rolando, M.; Valente, C. Establishing the tolerability and performance of tamarind seed polysaccharide (TSP) in treating dry eye syndrome: Results of a clinical study. BMC Ophthalmol. 2007, 7, 5. [Google Scholar] [CrossRef]
- Yu, B.; Tu, Y.; Zhou, G.; Shi, J.; Wu, E.; Wu, W. Self-Cross-Linked Hyaluronic Acid Hydrogel in Endonasal Endoscopic Dacryocystorhinostomy: A Randomized, Controlled Trial. J. Craniofac Surg. 2021, 32, 1942–1945. [Google Scholar] [CrossRef]
- Gronkiewicz, K.M.; Giuliano, E.A.; Sharma, A.; Mohan, R.R. Effects of topical hyaluronic acid on corneal wound healing in dogs: A pilot study. Vet. Ophthalmol. 2017, 20, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Ling, K.; Bastion, M.C. Use of commercially available sodium hyaluronate 0.18% eye drops for corneal epithelial healing in diabetic patients. Int. Ophthalmol. 2019, 39, 2195–2203. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Gong, L. Sodium hyaluronate eye drops treatment for superficial corneal abrasion caused by mechanical damage: A randomized clinical trial in the People’s Republic of China. Drug Des. Devel Ther. 2015, 9, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Chaidaroon, W.; Satayawut, N.; Tananuvat, N. Effect of 2% Hyaluronic Acid on the Rate of Healing of Corneal Epithelial Defect After Pterygium Surgery: A Randomized Controlled Trial. Drug Des. Devel Ther. 2021, 15, 4435–4443. [Google Scholar] [CrossRef]
- Wei, M.; Zou, Y.; Duan, F.; Ding, X.; Zhuang, J.; Deng, J.; Yuan, Z. Efficacy of Long-term Use of 0.3% Sodium Hyaluronate Eye Drops for Traumatic Corneal Abrasion: A Randomized Controlled, Pilot Trial. Cornea 2021, 40, 1248–1252. [Google Scholar] [CrossRef]
- Cagini, C.; Torroni, G.; Mariniello, M.; Di Lascio, G.; Martone, G.; Balestrazzi, A. Trehalose/sodium hyaluronate eye drops in post-cataract ocular surface disorders. Int Ophthalmol. 2021, 41, 3065–3071. [Google Scholar] [CrossRef] [PubMed]
- Reed, D.B.; Mannis, M.J.; Hills, J.F.; Johnson, C.A. Corneal epithelial healing after penetrating keratoplasty using topical Healon versus balanced salt solution. Ophthalmic Surg. 1987, 18, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Bata, A.M.; Witkowska, K.J.; Wozniak, P.A.; Fondi, K.; Schmidinger, G.; Pircher, N.; Szegedi, S.; Aranha Dos Santos, V.; Pantalon, A.; Werkmeister, R.M.; et al. Effect of a Matrix Therapy Agent on Corneal Epithelial Healing After Standard Collagen Cross-linking in Patients with Keratoconus: A Randomized Clinical Trial. JAMA Ophthalmol. 2016, 134, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Schulze, S.; Sekundo, W.; Kroll, P. Vergleich von Eigenserum und Hyaluronsäure zur Behandlung kornealer Erosiones nach Vitrektomie bei Diabetikern. Ophthalmologe 2005, 102, 863–868. [Google Scholar] [CrossRef] [PubMed]
- Waseem, M.; Rustam, N.; ul Islam, Q. Intraocular pressure after phacoemulsification using hydroxypropyl methylcellulose and sodium hyaluronate as viscoelastics. J. Ayub Med. Coll. Abbottabad. 2007, 19, 42–45. [Google Scholar] [PubMed]
- Casey-Power, S.; Ryan, R.; Behl, G.; McLoughlin, P.; Byrne, M.E.; Fitzhenry, L. Hyaluronic Acid: Its Versatile Use in Ocular Drug Delivery with a Specific Focus on Hyaluronic Acid-Based Polyelectrolyte Complexes. Pharmaceutics 2022, 14, 1479. [Google Scholar] [CrossRef] [PubMed]
- Korogiannaki, M.; Zhang, J.; Sheardown, H. Surface modification of model hydrogel contact lenses with hyaluronic acid via thiol-ene "click" chemistry for enhancing surface characteristics. J. Biomater. Appl. 2017, 32, 446–462. [Google Scholar] [CrossRef] [PubMed]
- Safa, M.; Natalizio, A.; Hee, C.K. A Prospective, Open-Label Study to Evaluate the Impact of VYC-12L Injection on Skin Quality Attributes in Healthy Volunteers. Clin. Cosmet Investig. Dermatol. 2022, 15, 411–426, Erratum in Clin. Cosmet Investig. Dermatol. 2022, 15, 585–586. [Google Scholar] [CrossRef] [PubMed]
- Salwowska, N.M.; Bebenek, K.A.; Żądło, D.A.; Wcisło-Dziadecka, D.L. Physiochemical properties and application of hyaluronic acid: A systematic review. J. Cosmet. Dermatol. 2016, 15, 520–526. [Google Scholar] [CrossRef]
- Sabadotto, M.; Theunis, J.; Black, D.; Mengeaud, V.; Schmitt, A.M. In vivo assessment of the effect of a cream containing Avena Rhealba® extract and hyaluronic acid on the restoration of the skin barrier in de-epidermised skin produced with an erbium-YAG laser. Eur. J. Dermatol. 2014, 24, 583–588. [Google Scholar] [CrossRef]
- Fedyakova, E.; Pino, A.; Kogan, L.; Eganova, C.; Troya, M.; Anitua, E. An autologous protein gel for soft tissue augmentation: In vitro characterization and clinical evaluation. J. Cosmet. Dermatol. 2019, 18, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Park, M.K.; Kim, B.J.; Kim, M.N.; Kim, C.W.; Kim, S.E. The treatment of keloids with pneumatic technology: A pilot study. Int. J. Dermatol. 2012, 51, 1502–1507. [Google Scholar] [CrossRef] [PubMed]
- Freire Dos Santos, M.J.; Carvalho, R.; Arnaut, L.G. Split-Face, Randomized, Placebo-Controlled, Double-Blind Study to Investigate Passive Versus Active Dermal Filler Administration. Aesthetic Plast. Surg. 2018, 42, 1655–1663. [Google Scholar] [CrossRef] [PubMed]
- Limmer, E.E.; Glass, D. A 2nd. A Review of Current Keloid Management: Mainstay Monotherapies and Emerging Approaches. Dermatol. Ther. 2020, 10, 931–948. [Google Scholar] [CrossRef] [PubMed]
- Stenfors, L.E. Treatment of tympanic membrane perforations with hyaluronan in an open pilot study of unselected patients. Acta Otolaryngol. 1987, 442, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Zoumalan, C.I.; Tadayon, S.C.; Roostaeian, J.; Rossi, A.M.; Gabriel, A. Safety and Efficacy of a Scar Cream Consisting of Highly Selective Growth Factors Within a Silicone Cream Matrix: A Double-Blinded, Randomized, Multicenter Study. Aesthetic Surg. J. 2019, 39, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Ud-Din, S.; Foden, P.; Mazhari, M.; Al-Habba, S.; Baguneid, M.; Bulfone-Paus, S.; McGeorge, D.; Bayat, A. A Double-Blind, Randomized Trial Shows the Role of Zonal Priming and Direct Topical Application of Epigallocatechin-3-Gallate in the Modulation of Cutaneous Scarring in Human Skin. J. Investig. Dermatol. 2019, 139, 1680–1690.e16. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.; Singh, H.; Singh, M. Repair of tympanic membrane perforation by topical application of 1% sodium hyaluronate. Indian J. Otolaryngol. Head Neck Surg. 2006, 58, 241–244. [Google Scholar] [CrossRef]
- Leone, C.A.; Caruso, A.A.; Allocca, V.; Barra, E.; Leone, R. Pilot study on the effects of high molecular weight sodium hyaluronate in the treatment of chronic pharyngitis. Int. J. Immunopathol. Pharmacol. 2015, 28, 532–538. [Google Scholar] [CrossRef]
- Colella, G.; Cannavale, R.; Vicidomini, A.; Rinaldi, G.; Compilato, D.; Campisi, G. Efficacy of a spray compound containing a pool of collagen precursor synthetic aminoacids (l-proline, l-leucine, l-lysine and glycine) combined with sodium hyaluronate to manage chemo/radiotherapy-induced oral mucositis: Preliminary data of an open trial. Int. J. Immunopathol. Pharmacol. 2010, 23, 143–151. [Google Scholar] [CrossRef]
- Hashem, A.S.; Issrani, R.; Elsayed, T.E.E.; Prabhu, N. Topical hyaluronic acid in the management of oral lichen planus: A comparative study. J. Investig. Clin. Dent. 2019, 10, e12385. [Google Scholar] [CrossRef] [PubMed]
- Romeo, U.; Libotte, F.; Palaia, G.; Galanakis, A.; Gaimari, G.; Tenore, G.; Del Vecchio, A.; Polimeni, A. Oral soft tissue wound healing after laser surgery with or without a pool of amino acids and sodium hyaluronate: A randomized clinical study. Photomed. Laser Surg. 2014, 32, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Maaz Arif, M.; Khan, S.M.; Gull, N.; Tabish, T.A.; Zia, S.; Ullah Khan, R.; Awais, S.M.; Arif Butt, M. Polymer-based biomaterials for chronic wound management: Promises and challenges. Int. J. Pharm. 2021, 598, 120270. [Google Scholar] [CrossRef] [PubMed]
- Dulińska-Litewka, J.; Dykas, K.; Felkle, D.; Karnas, K.; Khachatryan, G.; Karewicz, A. Hyaluronic Acid-Silver Nanocomposites and Their Biomedical Applications: A Review. Materials 2021, 15, 234. [Google Scholar] [CrossRef] [PubMed]
- Priya, S.; Batra, U.; Samshritha, R.N.; Sharma, S.; Chaurasiya, A.; Singhvi, G. Polysaccharide-based nanofibers for pharmaceutical and biomedical applications: A review. Int. J. Biol. Macromol. 2022, 218, 209–224. [Google Scholar] [CrossRef]
- Melrose, J. Fractone Stem Cell Niche Components Provide Intuitive Clues in the Design of New Therapeutic Procedures/Biomatrices for Neural Repair. Int. J. Mol. Sci. 2022, 23, 5148. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Zorrilla, S.; Blanco Carrión, A.; García García, A.; Galindo Moreno, P.; Marichalar Mendía, X.; Seoane Prado, R.; Pérez Estévez, A.J.; Pérez-Sayáns, M. Effect of antiseptic gels in the microbiologic colonization of the suture threads after oral surgery. Sci. Rep. 2020, 10, 8360. [Google Scholar] [CrossRef] [PubMed]
- Canciani, E.; Sirello, R.; Pellegrini, G.; Henin, D.; Perrotta, M.; Toma, M.; Khomchyna, N.; Dellavia, C. Effects of Vitamin and Amino Acid-Enriched Hyaluronic Acid Gel on the Healing of Oral Mucosa: In Vivo and In Vitro Study. Medicina 2021, 57, 285. [Google Scholar] [CrossRef] [PubMed]
- Cassano, M.; Russo, G.M.; Granieri, C.; Cassano, P. Cytofunctional changes in nasal ciliated cells in patients treated with hyaluronate after nasal surgery. Am. J. Rhinol. Allergy 2016, 30, 83–88. [Google Scholar] [CrossRef]
- Miller, R.S.; Steward, D.L.; Tami, T.A.; Sillars, M.J.; Seiden, A.M.; Shete, M.; Paskowski, C.; Welge, J. The clinical effects of hyaluronic acid ester nasal dressing (Merogel) on intranasal wound healing after functional endoscopic sinus surgery. Otolaryngol. Head Neck Surg. 2003, 128, 862–869. [Google Scholar]
- Fallacara, A.; Baldini, E.; Manfredini, S.; Vertuani, S. Hyaluronic Acid in the Third Millennium. Polymers 2018, 10, 701. [Google Scholar] [CrossRef] [PubMed]
- Gocmen, G.; Aktop, S.; Tüzüner, B.; Goker, B.; Yarat, A. Effects of hyaluronic acid on bleeding following third molar extraction. J. Appl. Oral Sci. 2017, 25, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Marin, S.; Popovic-Pejicic, S.; Radosevic-Caric, B.; Trtić, N.; Tatic, Z.; Selakovic, S. Hyaluronic acid treatment outcome on the post-extraction wound healing in patients with poorly controlled type 2 diabetes: A randomized controlled split-mouth study. Med. Oral Patol. Oral Cir. Bucal. 2020, 25, e154–e160. [Google Scholar] [CrossRef] [PubMed]
- Suchánek, J.; Ivančaková, R.K.; Mottl, R.; Browne, K.Z.; Pilneyová, K.C.; Pilbauerová, N.; Schmidt, J.; Suchánková Kleplová, T. Hyaluronic Acid-Based Medical Device for Treatment of Alveolar Osteitis-Clinical Study. Int. J. Environ. Res. Public Health 2019, 16, 3698. [Google Scholar] [CrossRef] [PubMed]
- Bural, C.; Güven, M.Ç.; Kayacıoğlu, B.; Ak, G.; Bayraktar, G.; Bilhan, H. Effect of Over-the-Counter Topical Agents on Denture-Induced Traumatic Lesions: A Clinical Study. Int. J. Prosthodont. 2018, 31, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Göçmen, G.; Atalı, O.; Aktop, S.; Sipahi, A.; Gönül, O. Hyaluronic Acid Versus Ultrasonic Resorbable Pin Fixation for Space Maintenance in Non-Grafted Sinus Lifting. J. Oral Maxillofac. Surg. 2016, 74, 497–504. [Google Scholar] [CrossRef] [PubMed]
- de Araújo Nobre, M.; Cintra, N.; Maló, P. Peri-implant maintenance of immediate function implants: A pilot study comparing hyaluronic acid and chlorhexidine. Int. J. Dent. Hyg. 2007, 5, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Alipoor, R.; Ayan, M.; Hamblin, M.R.; Ranjbar, R.; Rashki, S. Hyaluronic Acid-Based Nanomaterials as a New Approach to the Treatment and Prevention of Bacterial Infections. Front. Bioeng. Biotechnol. 2022, 10, 913912. [Google Scholar] [CrossRef] [PubMed]
- Kaul, A.; Short, W.D.; Keswani, S.G.; Wang, X. Immunologic Roles of Hyaluronan in Dermal Wound Healing. Biomolecules 2021, 11, 1234. [Google Scholar] [CrossRef]
- Gocmen, G.; Gonul, O.; Oktay, N.S.; Yarat, A.; Goker, K. The antioxidant and anti-inflammatory efficiency of hyaluronic acid after third molar extraction. J. Craniomaxillofac. Surg. 2015, 43, 1033–1037. [Google Scholar] [CrossRef]
- Khalil, S.; Habashneh, R.A.; Alomari, S.; Alzoubi, M. Local application of hyaluronic acid in conjunction with free gingival graft: A randomized clinical trial. Clin. Oral Investig. 2022, 26, 2165–2174. [Google Scholar] [CrossRef] [PubMed]
- Ibraheem, W.; Jedaiba, W.H.; Alnami, A.M.; Hussain Baiti, L.A.; Ali Manqari, S.M.; Bhati, A.; Almarghlani, A. Efficacy of hyaluronic acid gel and spray in healing of extraction wound: A randomized controlled study. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 3444–3449. [Google Scholar]
- Algawi, K.; Agrell, B.; Goggin, M.; O’Keefe, M. Randomized clinical trial of topical sodium hyaluronate after excimer laser photorefractive keratectomy. J. Refract. Surg. 1995, 11, 42–44. [Google Scholar] [CrossRef] [PubMed]
- Wolsey, D.; Slade, S.; Wirostko, B.M.; Brandano, L.A.; Mann, B.K.; Durrie, D.S.; Thompson, V. Novel Cross-Linked Ocular Bandage Gel Improves Reepithelialization After Photorefractive Keratectomy: A Randomized, Masked Prospective Study. J. Ocul. Pharmacol. Ther. 2020, 36, 602–608. [Google Scholar] [CrossRef] [PubMed]
- De Seta, F.; Caruso, S.; Di Lorenzo, G.; Romano, F.; Mirandola, M.; Nappi, R.E. Efficacy and safety of a new vaginal gel for the treatment of symptoms associated with vulvovaginal atrophy in postmenopausal women: A double-blind randomized placebo-controlled study. Maturitas 2021, 147, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Cagnacci, A.; Barattini, D.F.; Casolati, E.; Pecoroni, A.; Mangrella, M.; Patrascu, L.C. Polycarbophil vaginal moisturizing gel versus hyaluronic acid gel in women affected by vaginal dryness in late menopausal transition: A prospective randomized trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 2022, 270, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Esposito, C.; Del Conte, F.; Cerulo, M.; Coppola, V.; Esposito, G.; Ricciardi, E.; Crocetto, F.; Castagnetti, M.; Calignano, A.; Escolino, M. Evaluation of efficacy of oxygen-enriched oil-based gel dressing in patients who underwent surgical repair of distal hypospadias: A prospective randomised clinical trial. World J. Urol. 2021, 39, 2205–2215. [Google Scholar] [CrossRef]
- Hernigou, J.; Verdonk, P.; Homma, Y.; Verdonk, R.; Goodman, S.B.; Hernigou, P. Nonoperative and Operative Bone and Cartilage Regeneration and Orthopaedic Biologics of the Hip: An Orthoregeneration Network (ON) Foundation Hip Review. Arthroscopy 2022, 38, 643–656. [Google Scholar] [CrossRef]
Dressing Type | Commercial Name | Characteristics | References | |
---|---|---|---|---|
HA-based hydrogels | Hylase Wound Gel® |
| Khelfi (2018) [28]; Zerbinati et al. (2020) [29]. | |
HA-based films | Hyalosafe® |
| Longinotti (2014) [30]; Oro et al. (2011) [31]. | |
HA-based sponges | HylaSponge® |
| Simões et al. (2018) [32]; Nguyen et al. (2019) [33]; Mahedia et al. (2016) [34]. | |
HYAFF hyaluronan-based biodegradable polymers | HYAFFbiopolymer-based scaffold | Laserskin® |
| Price, Berry, and Navsaria (2007) [35]. |
HA-based membrane | Hyalomatrix® |
| Longinotti (2014) [30]. | |
Fleece wound dressing composed of HYAFF | Hyalofill-F® |
| Taddeucci et al. (2004) [36]. | |
Scaffolds composed of HA and platelet-rich plasma | / |
| De Angelis et al. (2019) [46]. | |
Autologous platelet-rich fibrin (A-PRF) and HA | / |
| Kartika et al. (2021) [47]. | |
Scaffolds with HA and epidermal growth factor (EGF) | / |
| Su et al. (2014) [48]. | |
Tranexamic acid into composite alginate-HA sponge | / |
| Catanzano et al. (2018) [49]. | |
Topical formulations (Cream, gels, and powders) | Ialuset cream® |
| Dereure et al. (2012) [50]. | |
Connettivina Plus® |
| Paghetti et al. (2009) [51]. | ||
Vulnamin® |
| Abbruzzese et al. (2009) [53]; Cassino and Ricci (2010) [55]. | ||
Nucliaskin S™ |
| Caridi et al. (2016) [54]. | ||
Porcine dermis with polynucleotides-added HA | / |
| Segreto F et al. (2010) [56]. | |
Autologous fibroblast–HA complex | / |
| You et al. (2014) [59]. | |
Dermal matrix | Dermalix (Dx) |
| Çetinkalp et al. (2021) [60]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antoszewska, M.; Sokolewicz, E.M.; Barańska-Rybak, W. Wide Use of Hyaluronic Acid in the Process of Wound Healing—A Rapid Review. Sci. Pharm. 2024, 92, 23. https://doi.org/10.3390/scipharm92020023
Antoszewska M, Sokolewicz EM, Barańska-Rybak W. Wide Use of Hyaluronic Acid in the Process of Wound Healing—A Rapid Review. Scientia Pharmaceutica. 2024; 92(2):23. https://doi.org/10.3390/scipharm92020023
Chicago/Turabian StyleAntoszewska, Magdalena, Ewa Maria Sokolewicz, and Wioletta Barańska-Rybak. 2024. "Wide Use of Hyaluronic Acid in the Process of Wound Healing—A Rapid Review" Scientia Pharmaceutica 92, no. 2: 23. https://doi.org/10.3390/scipharm92020023