Effects of Aging, Long-Term and Lifelong Exercise on the Urinary Metabolic Footprint of Rats
Abstract
:1. Introduction
2. Results
2.1. Multivariate Analysis
2.2. Univariate Analyses
2.2.1. Amino Acids and Amino Acid Derivatives
2.2.2. Carbohydrate and Lipid Metabolism
2.2.3. Krebs Cycle
2.2.4. Purine and Pyrimidine Metabolism
2.2.5. Gut Microbiome Metabolism
2.2.6. Other Metabolites
3. Discussion
3.1. Amino Acids and Amino Acid Derivatives
3.2. Carbohydrate and Lipid Metabolism
3.3. Purine and Pyrimidine Metabolism
3.4. Gut Microbiome Metabolism
3.5. Other Metabolites
4. Materials and Methods
4.1. Animals, Study Design, and Ethics
4.2. Exercise Training
4.3. Sampling
4.4. LC/MS Analysis
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pollock, R.D.; Carter, S.; Velloso, C.P.; Duggal, N.A.; Lord, J.M.; Lazarus, N.R.; Harridge, S.D. An investigation into the relationship between age and physiological function in highly active older adults. J. Physiol. 2015, 593, 657–680. [Google Scholar] [CrossRef] [Green Version]
- Beard, J.R.; Officer, A.; de Carvalho, I.A.; Sadana, R.; Pot, A.M.; Michel, J.P.; Lloyd-Sherlock, P.; Epping-Jordan, J.E.; Peeters, G.G.; Mahanani, W.R.; et al. The World report on ageing and health: A policy framework for healthy ageing. Lancet 2016, 387, 2145–2154. [Google Scholar] [CrossRef] [Green Version]
- Hellsten, Y. Limitations of skeletal muscle oxygen supply in ageing. J. Physiol. 2016, 594, 2259–2260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houtkooper, R.H.; Argmann, C.; Houten, S.M.; Cantó, C.; Jeninga, E.H.; Andreux, P.A.; Thomas, C.; Doenlen, R.; Schoonjans, K.; Auwerx, J. The metabolic footprint of aging in mice. Sci. Rep. 2011, 1, 134. [Google Scholar] [CrossRef] [PubMed]
- Rea, I.M. Towards ageing well: Use it or lose it: Exercise, epigenetics and cognition. Biogerontology 2017, 18, 679–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floegel, A.; Wientzek, A.; Bachlechner, U.; Jacobs, S.; Drogan, D.; Prehn, C.; Adamski, J.; Krumsiek, J.; Schulze, M.B.; Pischon, T. Linking diet, physical activity, cardiorespiratory fitness and obesity to serum metabolite networks: Findings from a population-based study. Int. J. Obes. 2014, 38, 1388–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, C.; Grada, C.O.; Ryan, M.; Roche, H.M.; De Vito, G.; Gibney, M.J.; Gibney, E.R.; Brennan, L. The relationship between aerobic fitness level and metabolic profiles in healthy adults. Mol. Nutr. Food Res. 2013, 57, 1246–1254. [Google Scholar] [CrossRef]
- Pechlivanis, A.; Papaioannou, K.G.; Tsalis, G.; Saraslanidis, P.; Mougios, V.; Theodoridis, G.A. Monitoring the response of the human urinary metabolome to brief maximal exercise by a combination of RP-UPLC-MS and 1 H NMR spectroscopy. J. Proteome Res. 2015, 14, 4610–4622. [Google Scholar] [CrossRef]
- Daskalaki, E.; Easton, C.; Watson, D.G. The application of metabolomic profiling to the effects of physical activity. Curr. Metab. 2014, 2, 233–263. [Google Scholar] [CrossRef] [Green Version]
- Kuhl, J.; Moritz, T.; Wagner, H.; Stenlund, H.; Lundgren, K.; Båvenholm, P.; Efendic, S.; Norstedt, G.; Tollet-Egnell, P. Metabolomics as a tool to evaluate exercise-induced improvements in insulin sensitivity. Metabolomics 2008, 4, 273–282. [Google Scholar] [CrossRef]
- Mukherjee, K.; Edgett, B.A.; Burrows, H.W.; Castro, C.; Griffin, J.L.; Schwertani, A.G.; Gurd, B.J.; Funk, C.D. Whole blood transcriptomics and urinary metabolomics to define adaptive biochemical pathways of high-intensity exercise in 50–60-year-old masters athletes. PLoS ONE 2014, 9, e92031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Vries, N.M.; van Ravensberg, C.D.; Hobbelen, J.S.; Olde Rikkert, M.G.; Staal, J.B.; Nijhuis-van der Sanden, M.W. Effects of physical exercise therapy on mobility, physical functioning, physical activity and quality of life in community-dwelling older adults with impaired mobility, physical disability and/or multi-morbidity: A meta-analysis. Ageing Res. Rev. 2012, 11, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Navas-Enamorado, I.; Bernier, M.; Brea-Calvo, G.; de Cabo, R. Influence of anaerobic and aerobic exercise on age-related pathways in skeletal muscle. Ageing Res. Rev. 2017, 37, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Heaney, L.M.; Deighton, K.; Suzuki, T. Non-targeted metabolomics in sport and exercise science. J. Sports Sci. 2017, 37, 959–967. [Google Scholar] [CrossRef]
- Wishart, D.S. Metabolomics for investigating physiological and pathophysiological processes. Physiol. Rev. 2019, 99, 1819–1875. [Google Scholar] [CrossRef]
- Kim, S.; Cheon, H.S.; Song, J.C.; Yun, S.M.; Park, S.I.; Jeon, J.P. Aging-related changes in mouse serum glycerophospholipid profiles. Osong Public Health Res. Perspect. 2014, 5, 345–350. [Google Scholar] [CrossRef] [Green Version]
- Pechlivanis, A.; Kostidis, S.; Saraslanidis, P.; Petridou, A.; Tsalis, G.; Mougios, V.; Gika, H.G.; Mikros, E.; Theodoridis, G.A. 1H NMR-based metabonomic investigation of the effect of two different exercise sessions on the metabolic fingerprint of human urine. J. Proteome Res. 2010, 9, 6405–6416. [Google Scholar] [CrossRef]
- Pechlivanis, A.; Kostidis, S.; Saraslanidis, P.; Petridou, A.; Tsalis, G.; Veselkov, K.; Mikros, E.; Mougios, V.; Theodoridis, G.A. 1H NMR Study on the short- and long-term impact of two training programs of sprint running on the metabolic fingerprint of human serum. J. Proteome Res. 2013, 12, 470–480. [Google Scholar] [CrossRef]
- Pechlivanis, A.; Chrysovalantou, A.; Veskoukis, A.S.; Kouretas, D.; Mougios, V.; Theodoridis, G.A. GC–MS analysis of blood for the metabonomic investigation of the effects of physical exercise and allopurinol administration on rats. J. Chromatogr. B 2014, 966, 127–131. [Google Scholar] [CrossRef]
- Siopi, A.; Deda, O.; Manou, V.; Kellis, S.; Kosmidis, I.; Komninou, D.; Raikos, N.; Christoulas, K.; Theodoridis, G.A.; Mougios, V. Effects of Different Exercise Modes on the Urinary Metabolic Fingerprint of Men with and without Metabolic Syndrome. Metabolites 2017, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Siopi, A.; Deda, O.; Manou, V.; Kosmidis, I.; Komninou, D.; Raikos, N.; Theodoridis, G.A.; Mougios, V. Comparison of the Serum Metabolic Fingerprint of Different Exercise Modes in Men with and without Metabolic Syndrome. Metabolites 2019, 9, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deda, O.; Gika, H.G.; Taitzoglou, I.; Raikos, N.; Theodoridis, G. Impact of exercise and aging on rat urine and blood metabolome. An LC-MS based metabolomics longitudinal study. Metabolites 2017, 7, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzimou, A.; Benaki, D.; Nikolaidis, S.; Mikros, E.; Taitzoglou, I.; Mougios, V. Effects of lifelong exercise and aging on the blood metabolic fingerprint of rats. Biogerontology 2020, 21, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, N.R.; Lord, J.M.; Harridge, S.D.R. The relationships and interactions between age, exercise and physiological function. J. Physiol. 2018, 597, 1299–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, L.C.; Martens, C.R.; Santos-Parker, J.R.; Bassett, C.J.; Strahler, T.R.; Cruickshank-Quinn, C.; Reisdorph, N.; McQueen, M.B.; Seals, D.R. Amino acid and lipid associated plasma metabolomic patterns are related to healthspan indicators with ageing in humans. Clin. Sci. 2018, 132, 1765–1777. [Google Scholar] [CrossRef]
- Xiao, Q.; Moore, S.C.; Keadle, S.K.; Xiang, Y.B.; Zheng, W.; Peters, T.M.; Leitzmann, M.F.; Ji, B.T.; Sampson, J.N.; Shu, X.O.; et al. Objectively measured physical activity and plasma metabolomics in the Shanghai Physical Activity Study. Int. J. Epidemiol. 2016, 45, 1433–1444. [Google Scholar] [CrossRef]
- Kim, M.J.; Yang, H.J.; Kim, J.H.; Ahn, C.W.; Lee, J.H.; Kim, K.S.; Kwon, D.Y. Obesity-related metabolomic analysis of human subjects in black soybean peptide intervention study by ultraperformance liquid chromatography and quadrupole-time-of-flight mass spectrometry. J. Obes. 2013, 2013, 874981. [Google Scholar] [CrossRef] [Green Version]
- Sheedy, J.R.; Gooley, P.R.; Nahid, A.; Tull, D.L.; McConville, M.J.; Kukuljan, S.; Nowson, C.A.; Daly, R.M.; Ebeling, P.R. 1H-NMR analysis of the human urinary metabolome in response to an 18-month multi-component exercise program and calcium–vitamin-D3 supplementation in older men. Appl. Physiol. Nutr. Metab. 2014, 39, 1294–1304. [Google Scholar] [CrossRef]
- Chaleckis, R.; Murakami, I.; Takada, J.; Kondoh, H.; Yanagida, M. Individual variability in human blood metabolites identifies age-related differences. Proc. Natl. Acad. Sci. USA 2016, 113, 4252–4259. [Google Scholar] [CrossRef] [Green Version]
- Lustgarten, M.S.; Fielding, R.A. Metabolites related to renal function, immune activation, and carbamylation are associated with muscle composition in older adults. Exp. Gerontol. 2017, 100, 1–10. [Google Scholar] [CrossRef]
- Refaey, M.E.; McGee-Lawrence, M.E.; Fulzele, S.; Kennedy, E.J.; Bollag, W.B.; Elsalanty, M.; Zhong, Q.; Ding, K.H.; Bendzunas, N.G.; Shi, X.M.; et al. Kynurenine, a tryptophan metabolite that accumulates with age, induces bone loss. J. Bone Miner. Res. 2017, 32, 2182–2193. [Google Scholar] [CrossRef] [PubMed]
- Collino, S.; Montoliu, I.; Martin, J.; Scherer, M.; Mari, D.; Salvioli, S.; Bucci, L.; Ostan, R.; Monti, D.; Biagi, E.; et al. Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS ONE 2013, 8, e56564. [Google Scholar] [CrossRef]
- Lee, K.; Jung, K.; Cho, J.; Lee, S.T.; Kim, H.S.; Shim, J.H.; Lee, S.K.; Kim, M.; Chu, K. High-fat diet and voluntary chronic aerobic exercise recover altered levels of aging-related tryptophan metabolites along the kynurenine pathway. Exp. Neurobiol. 2017, 26, 132–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennan, A.M.; Benson, M.; Morningstar, J.; Herzig, M.; Robbins, J.; Gerszten, R.E.; Ross, R. Plasma metabolite profiles in response to chronic exercise. Med. Sci. Sports Exerc. 2018, 50, 1480–1486. [Google Scholar] [CrossRef]
- Lewis, G.; Farrell, L.; Wood, M.J.; Martinovic, M.; Arany, Z.; Rowe, G.C.; Souza, A.; Cheng, S.; McCabe, E.L.; Yang, E.; et al. Metabolic signatures of exercise in human plasma. Sci. Transl. Med. 2010, 2, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Hanson, R.W.; Berger, N.A.; Trubitsyn, A. Reprogramming of energy metabolism as a driver of aging. Oncotarget 2016, 7, 15410–15420. [Google Scholar] [CrossRef] [Green Version]
- Mittendorfer, B.; Klein, S. Effect of aging on glucose and lipid metabolism during endurance exercise. Int. J. Sport Nutr. Exerc. Metab. 2001, 11, S86–S91. [Google Scholar] [CrossRef]
- Ravera, S.; Podestà, M.; Sabatini, F.; Dagnino, M.; Cilloni, D.; Fiorini, S.; Barla, A.; Frassoni, F. Discrete changes in glucose metabolism define aging. Sci. Rep. 2019, 9, 10347. [Google Scholar] [CrossRef] [Green Version]
- Valentini, L.; Ramminger, S.; Haas, V.; Postrach, E.; Werich, M.; Fischer, A.; Swidsinski, A.; Bereswill, S.; Lochs, H.; Schulzke, J.D. Small intestinal permeability in older adults. Physiol. Rep. 2014, 2, e00281. [Google Scholar] [CrossRef]
- Slupsky, C.M.; Rankin, K.N.; Wagner, J.; Fu, H.; Chang, D.; Weljie, A.M.; Saude, E.J.; Lix, B.; Adamko, D.J.; Shah, S.; et al. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Anal. Chem. 2007, 79, 6995–7004. [Google Scholar] [CrossRef]
- Mougios, V. Exercise Biochemistry; Human Kinetics: Champaign, IL, USA, 2020. [Google Scholar]
- Schnackenberg, L.K.; Sun, J.; Espandiari, P.; Holland, R.D.; Hanig, J.; Beger, R.D. Metabonomics evaluations of age-related changes in the urinary compositions of male Sprague Dawley rats and effects of data normalization methods on statistical and quantitative analysis. Bioinformatics 2007, 8, S3. [Google Scholar] [CrossRef] [Green Version]
- Zieliński, J.; Slominska, E.M.; Król-Zielińska, M.; Krasiński, Z.; Kusy, K. Purine metabolism in sprint- vs endurance-trained athletes aged 20‒90 years. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Wan, Q.L.; Meng, X.; Fu, X.; Chen, B.; Yang, J.; Yang, H.; Zhou, Q. Intermediate metabolites of the pyrimidine metabolism pathway extend the lifespan of C. elegans through regulating reproductive signals. Aging 2019, 11, 3993–4010. [Google Scholar] [CrossRef]
- Daskalaki, E.; Blackburn, G.; Kalna, G.; Zhang, T.; Anthony, N.; Watson, D.G. A study of the effects of exercise on the urinary metabolome using normalisation to individual metabolic output. Metabolites 2015, 5, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Enea, C.; Seguin, F.; Petitpas-Mulliez, J.; Boildieu, N.; Boisseau, N.; Delpech, N.; Diaz, V.; Eugene, M.; Dugué, B. 1H NMR-based metabolomics approach for exploring urinary metabolome modifications after acute and chronic physical exercise. Anal. Bioanal. Chem. 2010, 396, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Kochhar, S.; Jacobs, D.M.; Ramadan, Z.; Berruex, F.; Fuerholz, A.; Fay, L.B. Probing gender-specific metabolism differences in humans by nuclear magnetic resonance-based metabonomics. Anal. Biochem. 2006, 352, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Psihogios, N.G.; Gazi, I.F.; Elisaf, M.S.; Seferiadis, K.I.; Bairaktari, E.T. Gender-related and age-related urinalysis of healthy subjects by NMR-based metabonomics. NMR Biomed. 2008, 21, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Tosato, M.; Marzetti, E.; Cesari, M.; Savera, G.; Miller, R.R.; Bernabei, R.; Landi, F.; Calvani, R. Measurement of muscle mass in sarcopenia: From imaging to biochemical markers. Aging Clin. Exp. Res. 2017, 29, 19–27. [Google Scholar] [CrossRef]
- Wu, B.; Yan, S.; Lin, Z.; Wang, Q.; Yang, Y.; Yang, G.; Shen, Z.; Zhang, W. Metabonomic study on ageing: NMR-based investigation into rat urinary metabolites and the effect of the total flavone of Epimedium. Mol. Biosyst. 2008, 4, 855–861. [Google Scholar] [CrossRef]
- Rawson, E.S.; Venezia, A.C. Use of creatine in the elderly and evidence for effects on cognitive function in young and old. Amino Acids 2011, 40, 1349–1362. [Google Scholar] [CrossRef]
- Siddharth, J.; Chakrabarti, A.; Pannérec, A.; Karaz, S.; Morin-Rivron, D.; Masoodi, M.; Feige, J.N.; Parkinson, S.J. Aging and sarcopenia associate with specific interactions between gut microbes, serum biomarkers and host physiology in rats. Aging 2017, 9, 1698–1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuwatari, T.; Wada, H.; Shibata, K. Age-related alterations of B-group vitamin contents in urine, blood and liver from rats. J. Nutr. Sci. Vitaminol. 2008, 54, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Nazmi, A.; Weatherall, M.; Wilkins, B.; Robinson, G.M. Thiamin concentration in geriatric hospitalized patients using frusemide. J. Nutr. Gerontol. Geriatr. 2014, 33, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Gika, H.G.; Theodoridis, G.A.; Wilson, I.D. Liquid chromatography and ultra-performance liquid chromatography-mass spectrometry fingerprinting of human urine. Sample stability under different handling and storage conditions for metabonomics studies. J. Chromatogr. A 2008, 1189, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Stevens, V.L.; Hoover, E.; Wang, Y.; Zanetti, K.A. Pre-Analytical Factors that Affect Metabolite Stability in Human Urine, Plasma and Serum: A Review. Metabolites 2019, 9, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virgiliou, C.; Sampsonidis, I.; Gika, H.G.; Raikos, N.; Theodoridis, G.A. Development and validation of a HILIC-MS/MS multitargeted method for metabolomics applications. Electrophoresis 2015, 36, 2215–2225. [Google Scholar] [CrossRef]
- Veselkov, K.A.; Vingara, L.K.; Masson, P.; Robinette, S.L.; Want, E.; Li, J.V.; Barton, R.H.; Boursier-Neyret, C.; Walther, B.; Ebbels, T.M.; et al. Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery. Anal. Chem. 2011, 83, 5864–5872. [Google Scholar] [CrossRef]
- Tang, K.W.A.; Toh, Q.C.; Teo, B.W. Normalisation of urinary biomarkers to creatinine for clinical practice and research—When and why. Singap. Med. J. 2015, 56, 7–10. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Earlbaum Associates: Hillsdale, NJ, USA, 1988; Volume 2. [Google Scholar]
3 vs. 12 Months | 3 vs. 21 Months | 12 vs. 21 Months | |||||||
---|---|---|---|---|---|---|---|---|---|
Metabolites | VIP | AUC-ROC | log2FC | VIP | AUC-ROC | log2FC | VIP | AUC-ROC | log2FC |
Adenine | 1.75 | 0.94 | −1.34 | 1.77 | 0.90 | 1.09 | |||
Alanine | 1.25 | 0.91 | −1.94 | 1.24 | 0.77 | −0.63 | |||
Betaine | 1.35 | 0.81 | 0.29 | ||||||
Biotin | 1.21 | 0.82 | −1.57 | 2.00 | 0.98 | −2.00 | |||
Choline | 1.37 | 0.87 | −2.05 | 1.64 | 0.87 | 0.32 | |||
Creatine | 1.33 | 0.81 | −0.54 | ||||||
Cytosine | 1.60 | 0.85 | −0.65 | 1.68 | 0.89 | −0.86 | |||
Dimethylamine | 1.34 | 0.85 | 0.19 | 1.53 | 0.87 | −0.19 | |||
Guanine | 1.49 | 0.82 | −0.77 | 1.08 | 0.73 | −0.48 | |||
Isoleucine-leucine | 1.39 | 0.88 | −1.19 | ||||||
Kynurenate | 1.06 | 0.78 | −0.81 | ||||||
Mannitol | 1.64 | 0.91 | −1.19 | 1.10 | 0.76 | −0.56 | |||
Methylamine | 1.01 | 0.76 | −0.65 | ||||||
Proline | 1.68 | 0.94 | −0.96 | 1.86 | 0.92 | −0.76 | |||
Pyruvate | 1.65 | 0.90 | −0.89 | 1.71 | 0.87 | 0.83 | |||
Sarcosine | 1.32 | 0.82 | 0.84 | ||||||
TMAO | 1.19 | 0.74 | −0.26 | ||||||
Tryptamine | 1.12 | 0.78 | 1.39 | 1.10 | 0.73 | −0.62 | |||
Tyrosine | 1.07 | 0.81 | −1.10 | 1.21 | 0.84 | 1.16 | |||
Uridine | 1.71 | 0.94 | −1.01 | 1.86 | 0.93 | 0.97 | |||
α-Ketoglutarate | 1.50 | 0.82 | −0.49 |
Metabolites | VIP | p-Value | AUC-ROC | log2FC |
---|---|---|---|---|
Creatine | 1.04 | 0.026 | 0.67 | 0.04 |
Cytidine | 1.74 | <0.001 | 0.77 | 1.11 |
Cytosine | 1.11 | 0.043 | 0.61 | 0.17 |
Thymidine | 1.86 | 0.012 | 0.79 | −0.96 |
Comparisons | Analysis | R2X | R2Y | Q2Y |
---|---|---|---|---|
3 vs. 12 vs. 21 months | PCA | 0.535 | 0.199 | |
3 vs. 12 months | PCA | 0.689 | 0.254 | |
PLS-DA | 0.531 | 0.941 | 0.847 | |
3 vs. 21 months | PCA | 0.381 | 0.171 | |
PLS-DA | 0.43 | 0.862 | 0.733 | |
12 vs. 21 months | PCA | 0.381 | 0.18 | |
PLS-DA | 0.446 | 0.956 | 0.914 | |
AB vs. CD (12 months) | PLS-DA | 0.363 | 0.671 | 0.325 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzimou, A.; Nikolaidis, S.; Begou, O.; Siopi, A.; Deda, O.; Taitzoglou, I.; Theodoridis, G.; Mougios, V. Effects of Aging, Long-Term and Lifelong Exercise on the Urinary Metabolic Footprint of Rats. Metabolites 2020, 10, 481. https://doi.org/10.3390/metabo10120481
Tzimou A, Nikolaidis S, Begou O, Siopi A, Deda O, Taitzoglou I, Theodoridis G, Mougios V. Effects of Aging, Long-Term and Lifelong Exercise on the Urinary Metabolic Footprint of Rats. Metabolites. 2020; 10(12):481. https://doi.org/10.3390/metabo10120481
Chicago/Turabian StyleTzimou, Anastasia, Stefanos Nikolaidis, Olga Begou, Aikaterina Siopi, Olga Deda, Ioannis Taitzoglou, Georgios Theodoridis, and Vassilis Mougios. 2020. "Effects of Aging, Long-Term and Lifelong Exercise on the Urinary Metabolic Footprint of Rats" Metabolites 10, no. 12: 481. https://doi.org/10.3390/metabo10120481
APA StyleTzimou, A., Nikolaidis, S., Begou, O., Siopi, A., Deda, O., Taitzoglou, I., Theodoridis, G., & Mougios, V. (2020). Effects of Aging, Long-Term and Lifelong Exercise on the Urinary Metabolic Footprint of Rats. Metabolites, 10(12), 481. https://doi.org/10.3390/metabo10120481