Non-Targeted Metabolite Profiles and Sensory Properties Elucidate Commonalities and Differences of Wines Made with the Same Variety but Different Cultivar Clones
Abstract
:1. Introduction
2. Results
2.1. Viticultural Characteristics of Three Pinot Noir Grape Cluster Types
2.2. Influence of Different Pinot Noir Grape Cluster Types on Sensory Evaluation of Wines
2.3. Untargeted Metabolite Profiles of Three Pinot Noir Wines
2.4. Multivariate Discrimination of Three Pinot Noir Wines Based on Metabolic Profiling and Identification of Multiple Metabolic Features as Biomarkers of Wine Quality
3. Discussion
- (i)
- efficient discrimination of different wine quality
- (ii)
- identification of m/z features associated with specific sensory attributes.
4. Materials and Methods
4.1. Chemicals
4.2. Experimental Design
4.3. Wine Samples
4.4. Wine Sensory Analysis
4.5. Metabolite Measurements
4.6. Metabolite Annotation and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maul, E.; Topfer, R. Vitis International Variety Catalogue (VIVC): A cultivar database referenced by genetic pro les and morphology. BIO Web Conf. 2015, 5, 01009. [Google Scholar] [CrossRef] [Green Version]
- Lacombe, T. Contribution à L’étude de L’histoire Évolutive de la Vigne Cultivée (Vitis vinifera L.) par L’analyse de la Diversité Génétique Neutre et de Gènes D’intérêt. Ph.D. Thesis, Institut National d’Etudes Supérieures Agronomiques de Montpellier, Montpellier, France, 2012. [Google Scholar]
- OIV-2. Distribution of the World´s Grapevine Varieties, in Focus OIV 2017. Available online: http://www.oiv.int/public/medias/5888/en-distribution-of-the-worlds-grapevine-varieties.pdf (accessed on 31 January 2020).
- Armanino, C.; Casolino, M.C.; Casale, M.; Forina, M. Modelling aroma of three Italian red wines by headspace-mass spectrometry and potential functions. Anal. Chim. Acta 2008, 614, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Bavaresco, L.; Gatti, M.; Pezzutto, S.; Fregoni, M.; Mattivi, F. Effect of leaf removal on grape yield, berry composition and stilbene concentration. Am. J. Enol. Viticult. 2008, 59, 292–298. [Google Scholar]
- Vallarino, J.G.; Gainza-Cortés, F.; Verdugo-Alegría, C.; González, E.; Moreno, Y.M. Abiotic stresses differentially affect the expression of O-methyltransferase genes related to methoxypyrazine biosynthesis in seeded and parthenocarpic fruit of Vitis vinífera (L.). Food Chem. 2014, 154, 117–126. [Google Scholar] [CrossRef]
- Torrens, J.; Riu-Aumatell, M.; Lopez-Tamames, E.; Buxaderas, S. Volatile compounds of red and white wines by headspace-solid-phase micro-extraction using different fibers. J. Chromatogr. Sci. 2004, 42, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Sabon, I.; de Revel, G.; Kotseridis, Y.; Bertrand, A. Determination of volatile compounds in Grenache wines in relation with different terroirs in the Rhone Valley. J. Agric. Food Chem. 2002, 50, 6341–6345. [Google Scholar] [CrossRef]
- Koundouras, S.; Marinos, V.; Gkoulioti, A.; Kotseridis, Y.; van Leeuwen, C.J. Influence of vineyard location and vine water status on fruit maturation of nonirrigated cv. Agiorgitiko (Vitis vinifera L.). Effects on wine phenolic andaroma components. J. Agric. Food Chem. 2006, 54, 5077–5086. [Google Scholar] [CrossRef]
- Alessandrini, M.; Gaiotti, F.; Belfiore, N.; Matarese, F.; D’Onofrio, C.; Tomasi, D. Influence of vineyard altitude on glera grape ripening (Vitis vinifera L.): Effects on aroma evolution and wine sensory profile. J. Sci. Food Agric. 2017, 97, 2695–2705. [Google Scholar] [CrossRef]
- Esti, M.; Tamborra, P. Influence of winemaking techniques on aroma precursors. Anal. Chim. Acta 2006, 563, 173–179. [Google Scholar] [CrossRef]
- Gambetta, J.M.; Cozzolino, D.; Bastian, S.E.P.; Jeffery, D.W. Towards the creation of a wine quality prediction index: Correlation of chardonnay juice and wine compositions from different regions and quality levels. Food Anal. Methods 2016, 9, 2842–2855. [Google Scholar] [CrossRef]
- Smith, P. Assessment of relationships between grape chemical composition and grape allocation grade for cabernet sauvignon, shiraz and chardonnay. Aust. N. Z. Grapegrow. Winemak. 2015, 620, 30–32. [Google Scholar]
- Clarke, R.J.; Bakker, J. Wine Flavour Chemistry; Blackwell Publishing: Oxford, UK, 2004. [Google Scholar]
- Son, H.S.; Hwang, G.S.; Kim, K.M.; Kim, E.Y.; van den Berg, F.; Park, W.M.; Lee, C.H.; Hong, Y.S. 1H NMR-based metabolomic approach for understanding the fermentation behaviors of wine yeast strains. Anal. Chem. 2009, 81, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Son, H.S.; Kim, K.M.; van den Berg, F.; Hwang, G.S.; Park, W.M.; Lee, C.H.; Hong, Y.S. 1H nuclear magnetic resonance-based metabolomic characterization of wines by grape varieties and production areas. J. Agric. Food Chem. 2008, 56, 8007–8016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, L.; Gao, N.; Wang, D.; Gao, Q.; Jiang, S. Feature extraction and selection from volatile compounds for analytical classification of Chinese red wines from different varieties. Anal. Chim. Acta 2010, 662, 137–142. [Google Scholar] [CrossRef]
- Green, J.A.; Parr, W.V.; Breitmeyer, J.; Valentin, D.; Sherlock, R. Sensory and chemical characterization of Sauvignon Blanc wine: Influence of source of origin. Food Res. Int. 2011, 44, 2788–2797. [Google Scholar] [CrossRef]
- Cuadros-Inostroza, A.; Giavalisco, P.; Hummel, J.; Eckardt, A.; Willmitzer, L.; Pena-Cortés, H. Discrimination of wine attributes by metabolome analysis. Anal. Chem. 2010, 82, 3573–3580. [Google Scholar] [CrossRef]
- Rochfort, S.; Ezernieks, V.; Bastian, S.E.P.; Downey, M.O. Sensory attributes of wine influenced by variety and berry shading discriminated by NMR metabolomics. Food Chem. 2010, 121, 1296–1304. [Google Scholar] [CrossRef]
- Robinson, A.L.; Boss, P.K.; Heymann, H.; Solomon, P.S.; Trengove, R.D. Development of a sensitive non-targeted method for characterizing the wine volatile profile using headspace solid-phase microextraction comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J. Chromatogr. A 2011, 1218, 504–517. [Google Scholar] [CrossRef]
- Arapitsas, P.; Scholz, M.; Vrhovsek, U.; Di Blasi, S.; Biondi Bartolini, A.; Masuero, D.; Perenzoni, D.; Rigo, A.; Mattivi, F. A Metabolomic approach to the study of wine micro-oxygenation. PLoS ONE 2012, 7, e37783. [Google Scholar] [CrossRef]
- Corso, M.; Ziliottoa, F.; Rizzinia, F.M.; Teob, G.M.; Cargnello, G.; Bonghi, C. Sensorial, biochemical and molecular changes in Raboso Piave grape berries applying “Double Maturation Raisonnée” and late harvest techniques. Plant Sci. 2013, 208, 50–57. [Google Scholar] [CrossRef]
- Castro, C.C.; Martins, R.C.; Teixeira, J.A.; Silva Ferreira, A.C. Application of a high-throughput process analytical technology metabolomics pipeline to Port wine forced ageing process. Food Chem. 2014, 143, 384–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roullier-Gall, C.; Witting, M.; Gougeon, R.D.; Schmitt-Kopplin, P. High precision mass measurements for wine metabolomics. Front. Chem. 2014, 2, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocchetti, G.; Gatti, M.; Bavaresco, L.; Lucini, L. Untargeted metabolomics to investigate the phenolic composition of Chardonnay wines from different origins. J. Food Compost. Anal. 2018, 71, 87–93. [Google Scholar] [CrossRef]
- Welke, J.E.; Manfroia, V.; Zanus, M.; Lazzarotto, M.; Alcaraz Zini, C. Differentiation of wines according to grape variety using multivariate analysis of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection data. Food Chem. 2013, 141, 3897–3905. [Google Scholar] [CrossRef] [Green Version]
- Gougeon, R.D.; Lucio, M.; Frommberger, M.; Peyron, D.; Chassagne, D.; Alexandre, H.; Feuillat, F.; Voilley, A.; Cayot, P.; Gebefügi, I.; et al. The Chemodiversity of wines can reveal a metabologeography expression of cooperage oak wood. Proc. Natl. Acad. Sci. USA 2009, 106, 9174–9179. [Google Scholar] [CrossRef] [Green Version]
- Vaclavik, L.; Lacina, O.; Hajslova, J.; Zweigenbaum, J. The use of high performance liquid chromatography-quadrupole tome-of-flight mass spectrometry coupled to advanced data mining and chemometric tools for discrimination and classification of red wines according to their variety. Anal. Chim. Acta 2011, 685, 45–51. [Google Scholar] [CrossRef]
- Chun, H.; Keles, S. Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J. R. Stat. Soc. Ser. B Stat. Methodol. 2010, 72, 3–25. [Google Scholar] [CrossRef] [Green Version]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Piccardo, D.; Favre, G.; Pascual, O.; Canals, J.M.; Zamora, F.; González-Neves, G. Influence of the use of unripe grapes to reduce ethanol content and pH on the color, polyphenol and polysaccharide composition of conventional and hot macerated Pinot Noir and Tannat wines. Eur. Food Res. Technol. 2019, 245, 1321–1335. [Google Scholar] [CrossRef]
- Longbottom, M.; Simos, C.; Krstic, M.; Johnson, D. Grape quality assessments: A survey of current practice. Wine Vitic. J. 2013, 28, 33–37. [Google Scholar]
- Chapman, D.M.; Matthews, M.A.; Guinard, J.X. Sensory attributes of Cabernet Sauvignon wines made from vines with different crop yields. Am. J. Enol. Viticult. 2004, 55, 325–334. [Google Scholar]
- Chapman, D.M.; Roby, G.; Ebeler, S.E.; Guinard, J.X.; Matthews, M.A. Sensory attributes of Cabernet Sauvignon wines made from vines with different water status. Aust. J. Grape Wine Res. 2005, 11, 339–347. [Google Scholar] [CrossRef]
- Falcão, L.D.; Revel, G.D.; Perello, M.C.; Moutsiou, A.; Zanus, M.C.; Bordignon-Luiz, M.T. A survey of seasonal temperatures and vineyard altitude influences on 2-methoxy-3-isobutylpyrazine, C13- norisoprenoids, and the sensory profile of Brazilian Cabernet Sauvignon wines. J. Agric. Food Chem. 2007, 55, 3605–3612. [Google Scholar] [CrossRef] [Green Version]
- Preston, L.D.; Block, D.E.; Heymann, H.; Soleas, G.; Noble, A.C.; Ebeler, S.E. Defining vegetal aromas in Cabernet Sauvignon using sensory and chemical evaluations. Am. J. Enol. Viticult. 2008, 59, 137–145. [Google Scholar]
- Hufnagel, J.C.; Hofmann, T. Quantitative reconstruction of the nonvolatile senso-metabolome of a red wine. J. Agric. Food Chem. 2008, 56, 9190–9199. [Google Scholar] [CrossRef]
- Joscelyne, V.L.; Downey, M.O.; Mazza, M.; Bastian, S.E.P. Partial shading of Cabernet Sauvignon and Shiraz Vines altered wine color and mouthfeel attributes, but increased exposure had little impact. J. Agric. Food Chem. 2007, 55, 10889–10896. [Google Scholar] [CrossRef] [PubMed]
- Fontoin, H.; Saucier, C.; Teissedre, P.L.; Glories, Y. Effect of pH, ethanol and acidity on astringency and bitterness of grape seed tannin oligomers in model wine solution. Food Qual. Prefer. 2008, 19, 286–291. [Google Scholar] [CrossRef]
- Noble, A.C. Bitterness in wine. Physiol. Behav. 1994, 56, 1251–1255. [Google Scholar] [CrossRef]
- Vidal, S.; Courcoux, P.; Francis, L.; Kwaitkowski, M.; Gawel, R.; Williams, P.; Waters, E.; Cheynier, V. Use of an experimental design approach for evaluation of key wine components of mouth-feel perception. Food Qual. Prefer. 2004, 15, 209–217. [Google Scholar] [CrossRef]
- Jones, P.R.; Gawel, R.; Francis, I.L.; Waters, E.J. The influence of interactions between major white wine components on the aroma, flavour and texture of model white wine. Food Qual. Prefer. 2008, 19, 596–607. [Google Scholar] [CrossRef]
- Nurgel, C.; Pickering, G. Contribution of glycerol, ethanol and sugar to the perception of viscosity and density elicited by model white wines. J. Texture Stud. 2005, 36, 303–323. [Google Scholar] [CrossRef]
- Blanco-Vega, D.; Gomez-Alonso, S.; Hermosin-Gutierrez, I. Identification, content and distribution of anthocyanins and low molecular weight anthocyanin- derived pigments in Spanish commercial red wines. Food Chem. 2014, 158, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Aleixandre-Tudo, J.L.; Du Toit, W. Cold maceration application in red wine production and its effects on phenolic compounds: A review. LWT-Food Sci. Technol. 2018, 95, 200–208. [Google Scholar] [CrossRef]
- Setford, P.C.; Jeffery, D.W.; Grbin, P.R.; Muhlack, R.A. Factors affecting extraction and evolution of phenolic compounds during red wine maceration and the role of process modelling. Trends Food Sci. Technol. 2017, 69, 106–117. [Google Scholar] [CrossRef]
- Dimitrovska, M.; Bocevska, M.; Dimitrovski, D.; Murkovic, M. Anthocyanin composition of Vranec, Cabernet Sauvignon, Merlot and Pinot noir grapes as indicator of their varietal differentiation. Eur. Food Res. Technol. 2011, 232, 591–600. [Google Scholar] [CrossRef]
- Casassa, L.F.; Sar, S.E.; Bolcato, E.A.; Diaz-Sambueza, M.A.; Catania, A.A.; Fanzone, M.L.; Raco, F.; Barda, N. Chemical and sensory effects of cold soak, whole cluster fermentation, and stem additions in Pinot noir wines. Am. J. Enol. Viticult. 2019, 70, 19–33. [Google Scholar] [CrossRef]
- Arapitsas, P.; Perenzoni, D.; Nicolini, G.; Mattivi, F. Study of Sangiovese wines pigment profile by UHPLC-MS/MS. J. Agric. Food Chem. 2012, 60, 10461–10471. [Google Scholar] [CrossRef]
- Arapitsas, P.; Speri, G.; Angeli, A.; Perenzoni, D.; Mattivi, F. The influence of storage on the “chemical age” of red wines. Metabolomics 2014, 10, 816–832. [Google Scholar] [CrossRef]
- Marquez, A.; Dueñas, M.; Serratosa, M.P.; Merida, J. Formation of vitisins and anthocyanin-flavanol adducts during red grape drying. J. Agric. Food Chem. 2012, 60, 6866–6874. [Google Scholar] [CrossRef]
- Marquez, A.; Dueñas, M.; Serratosa, M.P.; Merida, J. Identification by HPLC-MS of anthocyanin derivatives in raisins. J. Chem. 2012, 2013, 274893. [Google Scholar] [CrossRef]
- Castillo-Muñoz, N.; Fernández-González, M.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Red-color related phenolic composition of Garnacha Tintorera (Vitis vinifera L.) grapes and red wines. J. Agric. Food Chem. 2009, 57, 7883–7891. [Google Scholar] [CrossRef] [PubMed]
- Castellarin, S.D.; Di Gaspero, G. Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biol. 2007, 7, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilmister, R.L.; Mazza, M.; Baker, N.K.; Faulkner, P.; Downey, M.O. A role for anthocyanin in determining wine tannin concentration in Shiraz. Food Chem. 2014, 152, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Weber, F.; Greve, K.; Durner, D.; Fischer, U.; Winterhalter, P. Sensory and chemical characterization of phenolic polymers from red wine obtained by gel permeation chromatography. Am. J. Enol. Vitic. 2013, 64, 15–25. [Google Scholar] [CrossRef]
- Schwarz, M.; Wabnitz, T.C.; Winterhalter, P. Pathway leading to the formation of anthocyanin–vinylphenol adducts and related pigments in red wines. J. Agric. Food Chem. 2003, 51, 3682–3687. [Google Scholar] [CrossRef]
- Somers, T.C. The polymeric nature of wine pigments. Phytochemistry 1971, 10, 2175–2186. [Google Scholar] [CrossRef]
- Schneider, Y.; Vincent, F.; Duranton, B.; Badolo, L.; Gosse, F.; Bergmann, C.; Seiler, N.; Raul, F. Anti-proliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells. Cancer Lett. 2000, 158, 85–91. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Y.; Zou, J.; Cao, K.; Xu, Y.; Wu, J.M. Effects of red wine and wine polyphenolic resveratrol on platelet aggregation in vivo and in vitro. Int. J. Mol. Med. 2002, 9, 77–79. [Google Scholar]
- Waterhouse, A.L. Wine phenolics. Ann. N. Y. Acad. Sci. 2002, 957, 21–36. [Google Scholar] [CrossRef]
- Mattivi, F.; Reniero, F.; Korhammer, S. Isolation, characterization, and evolution in red wine vinification of resveratrol monomers. J. Agric. Food Chem. 1995, 43, 1820–1823. [Google Scholar] [CrossRef]
- Chung, M.I.; Teng, C.M.; Cheng, K.L.; Ko, F.N.; Lin, C.N. An antiplatelet principle of Veratrum formosanum. Planta Med. 1992, 58, 274–276. [Google Scholar] [CrossRef] [PubMed]
- Orsini, F.; Pelizzoni, F.; Verotta, L.; Aburjai, T. Isolation, synthesis, and antiplatelet aggregation activity of resveratrol 3-O-d-glucopyranoside and related compounds. J. Nat. Prod. 1997, 60, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Gaudette, N.J.; Pickering, G.J. Sensory and chemical characteristics of trans-resveratrol-fortified wine. Aust. J. Grape Wine Res. 2011, 17, 249–257. [Google Scholar] [CrossRef]
- Peleg, H.; Gacon, K.; Schlin, P.; Noble, A.C. Bitterness and astringency of flavan-3-ol monomers, dimers and trimers. J. Sci. Food Agric. 1999, 79, 1123–1128. [Google Scholar] [CrossRef]
- Casassa, L.F.; Larsen, R.C.; Beaver, C.W.; Mireles, M.S.; Keller, M.; Riley, W.R.; Smithyman, R.; Harbertson, J.F. Impact of extended maceration and regulated deficit irrigation (RDI) in Cabernet Sauvignon wines: Characterization of proanthocyanidin distribution, anthocyanin extraction, and chromatic properties. J. Agric. Food Chem. 2013, 61, 6446–6457. [Google Scholar] [CrossRef]
- Stacklies, W.; Redestig, H.; Scholz, M.; Walther, D.; Sellarge, J. pcaMethods—A Bioconductor package providing PCA methods for incomplete data. Bioinformatics 2007, 23, 1164–1167. [Google Scholar] [CrossRef]
- Rohart, F.; Gautier, B.; Singh, A.; Le Cao, K.A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017, 13, e1005752. [Google Scholar] [CrossRef] [Green Version]
- Csardi, G.; Nepusz, T. The igraph software package for complex network research. Inter. J. Complex Syst. 2006, 1695, 1–9. Available online: http://igraph.org (accessed on 30 November 2019).
Season | Cluster Type | Grapes | Wines | ||||||
---|---|---|---|---|---|---|---|---|---|
Average | ± | SD | Average | ± | SD | ||||
Season 1 | Type i | ºBrix | 24.8 | ± | 2.92 | Alcohol (% vol.) | 14.4 | ± | 0.31 |
Residual sugar (gr/L) | 1.3 | ± | 0.17 | ||||||
Total Acidity (HSO4 gr/L) | 7.5 | ± | 1.11 | Total Acidity (HSO4 gr/L) | 4.3 | ± | 0.27 | ||
pH | 3.0 | ± | 0.11 | pH | 3.4 | ± | 0.01 | ||
Malic acid (mg/L) | 3455.2 | ± | 78.82 | Malic acid (mg/L) | 1352.1 | ± | 45.89 | ||
Tartaric acid (mg/L) | 5471.1 | ± | 61.23 | Tartaric acid (mg/L) | 2622.2 | ± | 53.21 | ||
Total phenolics (mg GAE) | 539.7 | ± | 33.31 | Total phenolics (mg GAE) | 1825.1 | ± | 23.44 | ||
Type ii | ºBrix | 23.7 | ± | 0.38 | Alcohol (% vol.) | 13.9 | ± | 0.12 | |
Residual sugar (gr/L) | 1.3 | ± | 0.31 | ||||||
Total Acidity (HSO4 gr/L) | 6.9 | ± | 0.38 | Total Acidity (HSO4 gr/L) | 4.1 | ± | 0.08 | ||
pH | 3.1 | ± | 0.04 | pH | 3.4 | ± | 0.04 | ||
Malic acid (mg/L) | 3322.4 | ± | 86.71 | Malic acid (mg/L) | 1423.8 | ± | 54.98 | ||
Tartaric acid (mg/L) | 5480.5 | ± | 33.11 | Tartaric acid (mg/L) | 2679.1 | ± | 57.34 | ||
Total phenolics (mg GAE) | 576.1 | ± | 47.14 | Total phenolics (mg GAE) | 1870.1 | ± | 42.32 | ||
Type iii | ºBrix | 20.9 | ± | 1.73 | Alcohol (% vol.) | 12.6 | ± | 0.26 | |
Residual sugar (gr/L) | 1.4 | ± | 0.15 | ||||||
Total Acidity (HSO4 gr/L) | 7.5 | ± | 0.99 | Total Acidity (HSO4 gr/L) | 3.7 | ± | 0.33 | ||
pH | 3.1 | ± | 0.09 | pH | 3.4 | ± | 0.12 | ||
Malic acid (mg/L) | 3089.3 | ± | 67.32 | Malic acid (mg/L) | 1200.6 | ± | 66.67 | ||
Tartaric acid (mg/L) | 5190.2 | ± | 45.33 | Tartaric acid (mg/L) | 2499.2 | ± | 71.10 | ||
Total phenolics (mg GAE) | 557.9 | ± | 52.41 | Total phenolics (mg GAE) | 1735.2 | ± | 33.42 | ||
Season 2 | Type i | ºBrix | 23.0 | ± | 0.67 | Alcohol (% vol.) | 13.5 | ± | 0.89 |
Residual sugar (gr/L) | 1.3 | ± | 0.10 | ||||||
Total Acidity (HSO4 gr/L) | 5.5 | ± | 0.82 | Total Acidity (HSO4 gr/L) | 4.4 | ± | 0.27 | ||
pH | 3.2 | ± | 0.11 | pH | 3.4 | ± | 0.12 | ||
Malic acid (mg/L) | 3333.3 | ± | 66.62 | Malic acid (mg/L) | 1487.1 | ± | 87.92 | ||
Tartaric acid (mg/L) | 5379.3 | ± | 58.32 | Tartaric acid (mg/L) | 2598.5 | ± | 58.72 | ||
Total phenolics (mg GAE) | 522.1 | ± | 31.23 | Total phenolics (mg GAE) | 1799.4 | ± | 35.09 | ||
Type ii | ºBrix | 24.0 | ± | 1.07 | Alcohol (% vol.) | 13.1 | ± | 0.65 | |
Residual sugar (gr/L) | 1.3 | ± | 0.25 | ||||||
Total Acidity (HSO4 gr/L) | 6.0 | ± | 1.01 | Total Acidity (HSO4 gr/L) | 4.2 | ± | 0.08 | ||
pH | 3.1 | ± | 0.15 | pH | 3.4 | ± | 0.04 | ||
Malic acid (mg/L) | 3322.3 | ± | 88.10 | Malic acid (mg/L) | 1376.2 | ± | 88.78 | ||
Tartaric acid (mg/L) | 5380.2 | ± | 30.22 | Tartaric acid (mg/L) | 2683.9 | ± | 66.91 | ||
Total phenolics (mg GAE) | 518.9 | ± | 48.80 | Total phenolics (mg GAE) | 1754.3 | ± | 55.42 | ||
Type iii | ºBrix | 23.7 | ± | 0.77 | Alcohol (% vol.) | 12.3 | ± | 0.35 | |
Residual sugar (gr/L) | 1.3 | ± | 0.15 | ||||||
Total Acidity (HSO4 gr/L) | 5.5 | ± | 0.30 | Total Acidity (HSO4 gr/L) | 3.8 | ± | 0.22 | ||
pH | 3.2 | ± | 0.12 | pH | 3.3 | ± | 0.09 | ||
Malic acid (mg/L) | 3101.3 | ± | 65.31 | Malic acid (mg/L) | 1246.8 | ± | 86.34 | ||
Tartaric acid (mg/L) | 5060.2 | ± | 82.23 | Tartaric acid (mg/L) | 2501.2 | ± | 79.98 | ||
Total phenolics (mg GAE) | 513.1 | ± | 50.22 | Total phenolics (mg GAE) | 1765.2 | ± | 67.72 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuadros-Inostroza, Á.; Verdugo-Alegría, C.; Willmitzer, L.; Moreno-Simunovic, Y.; Vallarino, J.G. Non-Targeted Metabolite Profiles and Sensory Properties Elucidate Commonalities and Differences of Wines Made with the Same Variety but Different Cultivar Clones. Metabolites 2020, 10, 220. https://doi.org/10.3390/metabo10060220
Cuadros-Inostroza Á, Verdugo-Alegría C, Willmitzer L, Moreno-Simunovic Y, Vallarino JG. Non-Targeted Metabolite Profiles and Sensory Properties Elucidate Commonalities and Differences of Wines Made with the Same Variety but Different Cultivar Clones. Metabolites. 2020; 10(6):220. https://doi.org/10.3390/metabo10060220
Chicago/Turabian StyleCuadros-Inostroza, Álvaro, Claudio Verdugo-Alegría, Lothar Willmitzer, Yerko Moreno-Simunovic, and José G. Vallarino. 2020. "Non-Targeted Metabolite Profiles and Sensory Properties Elucidate Commonalities and Differences of Wines Made with the Same Variety but Different Cultivar Clones" Metabolites 10, no. 6: 220. https://doi.org/10.3390/metabo10060220
APA StyleCuadros-Inostroza, Á., Verdugo-Alegría, C., Willmitzer, L., Moreno-Simunovic, Y., & Vallarino, J. G. (2020). Non-Targeted Metabolite Profiles and Sensory Properties Elucidate Commonalities and Differences of Wines Made with the Same Variety but Different Cultivar Clones. Metabolites, 10(6), 220. https://doi.org/10.3390/metabo10060220