Decrease in Myelin-Associated Lipids Precedes Neuronal Loss and Glial Activation in the CNS of the Sandhoff Mouse as Determined by Metabolomics
Abstract
:1. Introduction
2. Results
2.1. LC-MS and NMR Spectroscopy Show Metabolic Changes Directly Resulting from the Enzyme Deficiency
2.2. Alterations in Lysophosphatidylcholines and Lipid Components of Myelin Are Early Stage Changes Associated with Disease Progression
2.3. Sphingoid Bases Accumulate in the SD Mouse Brain
3. Discussion
4. Materials and Methods
Sphingoid Base Analysis by LC-MS
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahuran, D.J. Biochemical consequences of mutations causing the GM2 gangliosidoses. Biochim. Biophys. Acta 1999, 1455, 105–138. [Google Scholar] [CrossRef] [Green Version]
- Gaignard, P.; Fagart, J.; Niemir, N.; Puech, J.-P.; Azouguene, E.; Dussau, J.; Caillaud, C. Characterization of seven novel mutations on the HEXB gene in French Sandhoff patients. Gene 2013, 512, 521–526. [Google Scholar] [CrossRef]
- Kolter, T.; Sandhoff, K. Principles of lysosomal membrane digestion: Stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu. Rev. Cell Dev. Biol. 2005, 21, 81–103. [Google Scholar] [CrossRef] [Green Version]
- Saouab, R.; Mahi, M.; Abilkacem, R.; Boumdin, H.; Chaouir, S.; Agader, O.; Hanine, A. A case report of Sandhoff disease. Clin. Neuroradiol. 2011, 21, 83–85. [Google Scholar] [CrossRef] [Green Version]
- Kodama, T.; Togawa, T.; Tsukimura, T.; Kawashima, I.; Matsuoka, K.; Kitakaze, K.; Tsuji, D.; Itoh, K.; Ishida, Y.; Suzuki, M.; et al. Lyso-GM2 ganglioside: A possible biomarker of Tay-Sachs disease and Sandhoff disease. PLoS ONE 2011, 6, e29074. [Google Scholar] [CrossRef] [Green Version]
- Sango, K.; Yamanaka, S.; Hoffmann, A.; Okuda, Y.; Grinberg, A.; Wstphal, H.; McDonald, M.P.; Crawley, J.N.; Sandhoff, K.; Suzuki, K.; et al. Mouse models of Tay–Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat. Genet. 1995, 11, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Q.; Trasler, J.M.; Igdoura, S.; Michaud, J.; Hanal, N.; Gravel, R.A. Apoptotic cell death in mouse models of GM2 gangliosidosis and observations on human Tay-Sachs and Sandhoff diseases. Hum. Mol. Genet. 1997, 6, 1879–1885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, R.; Tifft, C.J.; Proia, R.L. Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation. Proc. Natl. Acad. Sci. USA 2000, 97, 10954–10959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, T.; Stang, E.; Fang, K.S.; de Moerloose, P.; Parton, R.G.; Gruenberg, J. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 1998, 392, 193–197. [Google Scholar] [CrossRef]
- Lowe, J.; Stuckey, D. MRS reveals additional hexose N-acetyl resonances in the brain of a mouse model for Sandhoff disease. Nmr. Biomed. 2005, 18, 517–526. [Google Scholar] [CrossRef]
- Wilken, B.; Dechent, P.; Hanefeld, F.; Frahm, J. Proton MRS of a child with Sandhoff disease reveals elevated brain hexosamine. Eur. J. Paediatr. Neurol. 2008, 12, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Zhu, H.; Hu, Y. Effects of lysophosphatidylcholine on beta-amyloid-induced neuronal apoptosis. Acta Pharm. Sin. 2009, 30, 388–395. [Google Scholar] [CrossRef] [Green Version]
- Morell, P.; Quarles, R.H. Basic Neurochemistry: Molecular, Cellular, and Medical Aspects; Siegel, G., Agranoff, B., Albers, R., Eds.; Elsevier: Amsterdam, The Netherlands, 1999; pp. 69–94. [Google Scholar]
- Clark, J. N-acetyl aspartate: A marker for neuronal loss or mitochondrial dysfunction. Dev. Neurosci. 1998, 20, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Demougeot, C.; Garnier, P. N-Acetylaspartate, a marker of both cellular dysfunction and neuronal loss: Its relevance to studies of acute brain injury. J. Neurochem. 2001, 77, 408–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjartmar, C.B.J.; Terada, N. N-acetylaspartate is an axon specific marker of mature white matter in vivo: A biochemical and immunohistochemical study on the rat optic nerve. Ann Neurol. 2002, 51, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Moffett, J.; Ross, B.; Arun, P. N-Acetylaspartate in the CNS: From neurodiagnostics to neurobiology. Prog. Neurobiol. 2007, 81, 89–131. [Google Scholar] [CrossRef] [Green Version]
- Pears, M.R.; Cooper, J.D.; Mitchison, H.M.; Mortishire-Smith, R.J.; Pearce, D.A.; Griffin, J.L. High resolution 1H NMR-based metabolomics indicates a neurotransmitter cycling deficit in cerebral tissue from a mouse model of Batten disease. J. Biol. Chem. 2005, 280, 42508–42514. [Google Scholar] [CrossRef] [Green Version]
- Jabs, S.; Quitsch, A.; Käkelä, R.; Koch, B.; Tyynelä, J.; Brade, H.; Glatzel, M.; Walkley, S.; Saftig, P.; Vanier, M.T.; et al. Accumulation of bis(monoacylglycero)phosphate and gangliosides in mouse models of neuronal ceroid lipofuscinosis. J. Neurochem. 2008, 106, 1415–1425. [Google Scholar] [CrossRef]
- Lecommandeur, E.; Baker, D.; Cox, T.M.; Nicholls, A.W.; Griffin, J.L. Alterations in endo-lysosomal function induce similar hepatic lipid profiles in rodent models of drug-induced phospholipidosis and Sandhoff disease. J. Lipid. Res. 2017, 58, 1306–1314. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, S.; Nagata, K.; Banno, Y.; Sakiyama, T.; Kitagawa, T.; Miyawaki, S.; Nozawa, Y. A mouse model for Niemann-Pick disease: Phospholipid class and fatty acid composition of various tissues. J. Lipid. Res. 1984, 25, 219–227. [Google Scholar]
- Meikle, P.J.; Duplock, S.; Blacklock, D.; Whitfield, P.D.; Macintosh, G.; Hopwood, J.J.; Fuller, M. Effect of lysosomal storage on bis(monoacylglycero)phosphate. Biochem. J. 2008, 411, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Akgoc, Z.S.-E.M.; Martin, D.R.; Han, X.; D’Azzo, A. Seyfried TN Bis(monoacylglycero)phosphate: A secondary storage lipid in the gangliosidoses. J. Lipid Res. 2015, 56, 1006–1013. [Google Scholar] [CrossRef] [Green Version]
- Thompson, K.L.; Zhang, J.; Stewart, S.; Rosenzweig, B.; Shea, K.; Mans, D.; Colatsky, T. Comparison of urinary and serum levels of di-22:6-bis(monoacylglycerol)phosphate as noninvasive biomarkers of phospholipidosis in rats. Toxicol. Lett. 2012, 213, 285–291. [Google Scholar] [CrossRef]
- Sleat, D.E.; Wiseman, J.A.; El-Banna, M.; Price, S.M.; Verot, L.; Shen, M.M.; Tint, G.S.; Vanier, M.T.; Walkley, S.U.; Lobel, P. Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc. Natl. Acad. Sci. USA 2004, 101, 5886–5891. [Google Scholar] [CrossRef] [Green Version]
- Käkelä, R.; Somerharju, P.; Tyynelä, J. Analysis of phospholipid molecular species in brains from patients with infantile and juvenile neuronal-ceroid lipofuscinosis using liquid chromatography-electrospray ionization mass spectrometry. J. Neurochem. 2003, 84, 1051–1065. [Google Scholar] [CrossRef]
- Mortuza, G.B.; Neville, W.A.; Delaney, J.; Waterfield, C.J.; Camilleri, P. Characterisation of a potential biomarker of phospholipidosis from amiodarone-treated rats. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2003, 1631, 136–146. [Google Scholar] [CrossRef]
- Hullin-Matsuda, F.; Luquain-Costaz, C.; Bouvier, J.; Delton-Vandenbroucke, I. Bis(monoacylglycero)phosphate, a peculiar phospholipid to control the fate of cholesterol: Implications in pathology. Prostaglandins Leukot Essent Fat. Acids 2009, 81, 313–324. [Google Scholar] [CrossRef]
- Chevallier, J.; Chamoun, Z.; Jiang, G.; Prestwich, G.; Sakai, N.; Matile, S.; Parton, R.G.; Gruenberg, J. Lysobisphosphatidic acid controls endosomal cholesterol levels. J. Biol. Chem. 2008, 283, 27871–27880. [Google Scholar] [CrossRef] [Green Version]
- Bosio, A.; Binczek, E.; Le Beau, M.M.; Fernald, A.A.; Stoffel, W. The Human Gene CGT Encoding the UDP-Galactose Ceramide Galactosyl Transferase (Cerebroside Synthase): Cloning, Characterization, and Assignment to Human Chromosome 4, Band q26. Genomics 1996, 34, 69–75. [Google Scholar] [CrossRef]
- Cachón-González, M.B.; Wang, S.Z.; Ziegler, R.; Cheng, S.H.; Cox, T.M. Reversibility of neuropathology in tay-sachs-related diseases. Hum. Mol. Genet. 2014, 23, 730–748. [Google Scholar] [CrossRef] [Green Version]
- Baek, R.C.; Martin, D.R.; Cox, N.R.; Seyfried, T.N. Comparative analysis of brain lipids in mice, cats, and humans with Sandhoff disease. Lipids 2009, 44, 197–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroll, R.A.; Pagel, M.A.; Roman-Goldstein, S.; Barkovich, A.J.; D’Agostino, A.N.; Neuwelt, E.A. White matter changes associated with feline GM2 gangliosidosis (Sandhoff disease): Correlation of MR findings with pathologic and ultrastructural abnormalities. Ajnr. Am. J. Neuroradiol. 1995, 16, 1219–1226. [Google Scholar] [PubMed]
- Muse, E.D.; Jurevics, H.; Toews, A.D.; Matsushima, G.K.; Morell, P. Parameters related to lipid metabolism as markers of myelination in mouse brain. J. Neurochem. 2001, 76, 77–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costantino-Ceccarini, E.; Morell, P. Biosynthesis of brain sphingolipids and myelin accumulation in the mouse. Lipids 1972, 7, 656–659. [Google Scholar] [CrossRef]
- Gent, W.; Gregson, N. Interaction of lysophosphatidylcholine with central-nervous-system myelin. Biochem. J. 1971, 122, 64P–65P. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dousset, V.; Brochet, B.; Vital, A.; Gross, C.; Benazzouz, A.; Boullerne, A.; Bidabe, A.M.; Gin, A.M.; Caille, J.M. Lysolecithin-induced demyelination in primates: Preliminary in vivo study with MR and magnetization transfer. Am. J. Neuroradiol. 1995, 16, 225–231. [Google Scholar] [PubMed]
- Makinodan, M.; Tatsumi, K.; Okuda, H.; Manabe, T.; Yamauchi, T.; Noriyama, Y.; Kishimoto, T.; Wanaka, A. Lysophosphatidylcholine induces delayed myelination in the juvenile ventral hippocampus and behavioral alterations in adulthood. Neurochem. Int. 2008, 53, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Ousman, S.S.; David, S. MIP-1 alpha, MCP-1, GM-CSF, and TNF- alpha Control the Immune Cell Response That Mediates Rapid Phagocytosis of Myelin from the Adult Mouse Spinal Cord. J. Neurosci. 2001, 21, 4649–4656. [Google Scholar] [CrossRef] [PubMed]
- Jeyakumar, M.; Thomas, R.; Elliot-Smith, E.; Smith, D.A.; van der Spoel, A.C.; D’Azzo, A.; Hugh Perry, V.; Butters, T.D.; Dwek, R.A.; Platt, F.M. Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain 2003, 126, 974–987. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Proia, R.L. Deletion of macrophage-inflammatory protein 1 alpha retards neurodegeneration in Sandhoff disease mice. Proc. Natl. Acad. Sci. USA 2004, 101, 8425–8430. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Lee, Y.-C.; Kim, S.-J.; Choi, M.S.; Tsai, P.-C.; Saha, A.; Wei, H.; Xu, Y.; Xiao, Y.-J.; Zhang, P.; et al. Production of lysophosphatidylcholine by cPLA2 in the brain of mice lacking PPT1 is a signal for phagocyte infiltration. Hum. Mol. Genet. 2007, 16, 837–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundaram, J.R.; Chan, E.S.; Poore, C.P.; Pareek, T.K.; Cheong, W.F.; Shui, G.; Tang, N.; Low, C.-M.; Wenk, M.R.; Kesavapany, S. Cdk5/p25-induced cytosolic PLA2-mediated lysophosphatidylcholine production regulates neuroinflammation and triggers neurodegeneration. J. Neurosci. 2012, 32, 1020–1034. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.R.; Merrill, A.H., Jr.; Obeid, L.M. Effects of Sphingosine and Other Sphingolipids on Protein Kinase C. Methods Enzymol. 2000, 312, 361–373. [Google Scholar] [PubMed]
- Callender, J.A.; Newton, A.C. Conventional protein kinase C in the brain: 40 years later. Neuronal. Signal. 2017, 1, NS20160005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sargeant, T.J.; Wang, S.; Bradley, J.; Smith, N.J.C.; Raha, A.A.; McNair, R.; Ziegler, R.J.; Cheng, S.H.; Cox, T.M.; Cachón-González, M.B. Adeno-associated virus-mediated expression of β-hexosaminidase prevents neuronal loss in the Sandhoff mouse brain. Hum. Mol. Genet. 2011, 20, 4371–4380. [Google Scholar] [CrossRef] [Green Version]
- Broekman, M.L.; Baek, R.C.; Comer, L.A.; Fernandez, J.L.; Seyfried, T.N.; Sena-Esteves, M. Complete correction of enzymatic deficiency and neurochemistry in the GM1-gangliosidosis mouse brain by neonatal adeno-associated virus-mediated gene delivery. Mol. Ther. 2007, 15, 30–37. [Google Scholar] [CrossRef]
- Belle, J.E.L.; Harris, N.G.; Williams, S.R.; Bhakoo, K.K. A comparison of cell and tissue extraction techniques using high-resolution 1 H-NMR spectroscopy. Nmr. Biomed. 2002, 15, 37–44. [Google Scholar] [CrossRef]
- Sullards, M.C.; Allegood, J.C.; Kelly, S.; Wang, E.; Haynes, C.A.; Park, H.; Chen, Y.; Merrill, A.H., Jr. Structure-Specific, Quantitative Methods for Analysis of Sphingolipids by Liquid Chromatography–Tandem Mass Spectrometry: “Inside-Out” Sphingolipidomics. Methods Enzymol. 2007, 432, 83–115. [Google Scholar]
- Shaner, R.L.; Allegood, J.C.; Park, H.; Wang, E.; Kelly, S.; Haynes, C.A.; Sullards, M.C.; Merrill, A.H., Jr. Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. J. Lipid Res. 2009, 50, 1692–1707. [Google Scholar] [CrossRef] [Green Version]
Compound | MRM (Da) | Dwell Time (ms) | Declustering Potential (V) | Collision Energy (V) | Collision Cell Exit Energy (V) |
---|---|---|---|---|---|
C14-Cer | 510.523 → 264.300 | 150 | 71 | 39 | 6 |
C16-Cer | 538.479 → 520.500 | 150 | 46 | 17 | 14 |
C18-Cer | 566.402 → 548.700 | 150 | 36 | 19 | 48 |
C18:1-Cer | 564.374 → 173.200 | 150 | 61 | 13 | 14 |
C20-Cer | 594.483 → 576.500 | 150 | 96 | 23 | 8 |
C22-Cer | 622.636 → 604.600 | 150 | 81 | 19 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lecommandeur, E.; Cachón-González, M.B.; Boddie, S.; McNally, B.D.; Nicholls, A.W.; Cox, T.M.; Griffin, J.L. Decrease in Myelin-Associated Lipids Precedes Neuronal Loss and Glial Activation in the CNS of the Sandhoff Mouse as Determined by Metabolomics. Metabolites 2021, 11, 18. https://doi.org/10.3390/metabo11010018
Lecommandeur E, Cachón-González MB, Boddie S, McNally BD, Nicholls AW, Cox TM, Griffin JL. Decrease in Myelin-Associated Lipids Precedes Neuronal Loss and Glial Activation in the CNS of the Sandhoff Mouse as Determined by Metabolomics. Metabolites. 2021; 11(1):18. https://doi.org/10.3390/metabo11010018
Chicago/Turabian StyleLecommandeur, Emmanuelle, Maria Begoña Cachón-González, Susannah Boddie, Ben D. McNally, Andrew W. Nicholls, Timothy M. Cox, and Julian L. Griffin. 2021. "Decrease in Myelin-Associated Lipids Precedes Neuronal Loss and Glial Activation in the CNS of the Sandhoff Mouse as Determined by Metabolomics" Metabolites 11, no. 1: 18. https://doi.org/10.3390/metabo11010018
APA StyleLecommandeur, E., Cachón-González, M. B., Boddie, S., McNally, B. D., Nicholls, A. W., Cox, T. M., & Griffin, J. L. (2021). Decrease in Myelin-Associated Lipids Precedes Neuronal Loss and Glial Activation in the CNS of the Sandhoff Mouse as Determined by Metabolomics. Metabolites, 11(1), 18. https://doi.org/10.3390/metabo11010018