Two Metabolomics Phenotypes of Human Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver Disease According to Fibrosis Severity
Abstract
:1. Introduction
2. Results
2.1. Patients Characteristics
2.2. Identification of Discriminant Metabolites
2.3. Differential Metabolites between NAFLD-HCC-F0F1 vs. NTT-F0F1
2.4. Differential Metabolites between NAFLD-HCC-F3F4 vs. NTT- F3F4
2.5. Differential Metabolites between NAFLD-HCCs according the Severity of Fibrosis
3. Discussion
3.1. Carbohydrate Metabolism in NAFLD-HCC: A Common Warburg Effect but Enhanced Neoglucogenesis in Severe Fibrosis
3.2. Preserved Antioxidant Defenses in HCC-F0F1
3.3. Enhanced Glutamine Synthetase Activity in HCC-F0F1 and Putative Involvement of the Beta-Catenin Pathway in NAFLD
3.4. BCAA Content and Possible Activation of the mTOR Pathway in HCC-F3F4
3.5. Methylation Disorders in HCC-F3F4
3.6. NAFLD-HCC in Non-Severe Fibrosis Displays a Cholinic Phenotype
3.7. Different Lipid Metabolism Reprogramming in NAFLD-HCC according to Fibrosis Severity
4. Patients and Methods
4.1. Patients and Collection of Specimens
4.2. Histology
4.3. Sample Preparation for NMR-Spectroscopy
4.4. 1H-NMR Spectroscopy
4.5. Data Processing
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HCC | hepatocellular carcinoma |
NAFLD | non-alcoholic fatty liver disease |
MS | metabolic syndrome |
MAFLD | metabolic associated fatty liver disease |
NAFLD-HCC | NAFLD associated HCC |
NMR | nuclear magnetic resonance |
NTT | non-tumoral tissue |
ppm | parts per million |
FA | fatty acids |
AA | Aminoacids |
Plp | Phospholipids |
Lac | Lactate |
Glc | glucose |
Gln | glutamine |
GS | glutamine synthase |
His | histidine |
GSx | glutathione |
Asc A | ascorbic acid |
PC | phosphocholine |
PtdCho | Phosphatidylcholine |
CK | choline kinase |
MUFA | monounsaturated fatty acids |
TCho | total cholesterol |
AUC | area under curve |
BCAA | branched chain aminoacids |
Val | Valine |
Leu | Leucine |
IsoLeu | Isoleucine |
Sar | Sarcosine |
GNMT | Glycine N-methyltransferase |
NAD | nicotinamide adenine dinucleotide |
SFA | saturated fatty acids |
DNL | de novo lipogenesis |
FASN | fatty acid synthase |
SCD | stearoyl coA desaturase |
FCho | free cholesterol |
TAG | Triacylglycerol |
PE | phosphoethanolamine |
PET | positron-emission tomography |
FDG | fluorodeoxyglucose |
ROS | reactive oxygen species |
TCA | tricarboxylic acid |
AAA | aromatic aminoacid |
Gly | Glycine |
THF | tetrahydrofolate |
CDP PtdEth | cytidine diphosphate phosphatidylethanolamine |
PEMT | phosphatidylethanolamine N-methyltransferase |
MestReNova | Mestrelab Research chemistry software solutions |
GA LDA ROC | Genetic Algorithm Linear Discriminant Analysis Receiver Operating Characteristic |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, A.; Sandhu, S.; Lai, J.-P.; Sandhu, D.S. Hepatocellular carcinoma in non-cirrhotic liver: A comprehensive review. World J. Hepatol. 2019, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Sanyal, A.J.; George, J.; Neuschwander-Tetri, B.; Tiribelli, C.; Kleiner, D.E.; Brunt, E.; Bugineusi, E.; Yilmaz, Y.; Younossi, Z.; et al. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020, 158, 1999–2014. [Google Scholar] [CrossRef] [PubMed]
- Bedossa, P.; Poynard, T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology 1996, 24, 289–293. [Google Scholar] [CrossRef]
- Ertle, J.; Dechêne, A.; Sowa, J.-P.; Penndorf, V.; Herzer, K.; Kaiser, G.; Schlaak, J.F.; Gerken, G.; Syn, W.K.; Canbay, A. Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int. J. Cancer. 2011, 128, 2436–2443. [Google Scholar] [CrossRef]
- Piscaglia, F.; Svegliati-Baroni, G.; Barchetti, A.; Pecorelli, A.; Marinelli, S.; Tiribelli, C.; Bellentani, S.; HCC-NAFLD Italian Study Group. Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: A multicenter prospective study. Hepatology 2016, 63, 827–838. [Google Scholar] [CrossRef]
- Paradis, V.; Zalinski, S.; Chelbi, E.; Guedj, N.; Degos, F.; Vilgrain, V.; Bedossa, P.; Belghiti, J. Hepatocellular carcinomas in patients with metabolic syndrome often develop without significant liver fibrosis: A pathological analysis. Hepatology 2009, 49, 851–859. [Google Scholar] [CrossRef]
- Sircana, A.; Paschetta, E.; Saba, F.; Molinaro, F.; Musso, G. Recent Insight into the Role of Fibrosis in Nonalcoholic Steatohepatitis-Related Hepatocellular Carcinoma. Int. J. Mol. Sci. 2019, 20, 1745. [Google Scholar] [CrossRef] [Green Version]
- Calderaro, J.; Couchy, G.; Imbeaud, S.; Amaddeo, G.; Letouzé, E.; Blanc, J.-F.; Laurent, C.; Hajji, Y.; Azoulay, D.; Bioulac-Sage, P.; et al. Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. J. Hepatol. 2017, 67, 727–738. [Google Scholar] [CrossRef]
- Wong, C.R.; Nguyen, M.H.; Lim, J.K. Hepatocellular carcinoma in patients with non-alcoholic fatty liver disease. World J. Gastroenterol. 2016, 37, 8294–8303. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Teilhet, C.; Morvan, D.; Joubert-Zakeyh, J.; Biesse, A.-S.; Pereira, B.; Massoulier, S.; Dechelotte, P.; Pezet, D.; Buc, E.; Lamblin, G.; et al. Specificities of Human Hepatocellular Carcinoma Developed on Non-Alcoholic Fatty Liver Disease in Absence of Cirrhosis Revealed by Tissue Extracts 1H-NMR Spectroscopy. Metabolites 2017, 7, 49. [Google Scholar] [CrossRef]
- Beyoğlu, D.; Idle, J.R. The metabolomic window into hepatobiliary disease. J. Hepatol. 2013, 59, 842–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyoğlu, D.; Imbeaud, S.; Maurhofer, O.; Bioulac-Sage, P.; Zucman-Rossi, J.; Dufour, J.-F.; Idle, J.R. Tissue metabolomics of hepatocellular carcinoma: Tumor energy metabolism and the role of transcriptomic classification. Hepatology 2013, 58, 229–238. [Google Scholar]
- Wong, C.C.-L.; Au, S.L.-K.; Tse, A.P.-W.; Xu, I.M.-J.; Lai, R.K.-H.; Chiu, D.K.-C.; Wei, L.L.; Fan, D.N.-Y.; Lo, R.C.-L.; Tsang, F.H.-C.; et al. Switching of pyruvate kinase isoform L to M2 promotes metabolic reprogramming in hepatocarcinogenesis. PLoS ONE 2014, 9, e115036. [Google Scholar] [CrossRef] [Green Version]
- Kwee, S.A.; Hernandez, B.; Chan, O.; Wong, L. Choline Kinase Alpha and Hexokinase-2 Protein Expression in Hepatocellular Carcinoma: Association with Survival. PLoS ONE 2012, 7, e46591. [Google Scholar] [CrossRef]
- Wang, D.; Moothart, D.R.; Lowy, D.R.; Qian, X. The Expression of Glyceraldehyde-3-Phosphate Dehydrogenase Associated Cell Cycle (GACC) Genes Correlates with Cancer Stage and Poor Survival in Patients with Solid Tumors. PLoS ONE 2013, 8, e61262. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.-C.; She, B.; Gao, W.-T.; Ji, Y.-H.; Xu, D.-D.; Wang, Q.-S.; Wang, S.-B. Positron-emission tomography for hepatocellular carcinoma: Current status and future prospects. World J. Gastroenterol. 2019, 25, 4682–4695. [Google Scholar] [CrossRef]
- García-Ruiz, C.; Fernández-Checa, J.C. Mitochondrial Oxidative Stress and Antioxidants Balance in Fatty Liver Disease. Hepatol. Commun. 2018, 2, 1425–1439. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Granados, B.; Morales, J.M.; Rodrigo, J.M.; Del Omo, J.; Serra, M.A.; Ferrandez, A.; Celda, B.; Monleon, D. Metabolic profile of chronic liver disease by NMR spectroscopy of human biopsies. Int. J. Mol. Med. 2011, 27, 111–117. [Google Scholar] [PubMed]
- Christa, L.; Simon, M.T.; Flinois, J.P.; Gebhadt, R.; Brechot, C.; Lasserre, C. Overexpression of glutamine synthetase in human primary liver cancer. Gastroenterology 1994, 106, 1312–1320. [Google Scholar] [CrossRef]
- Di Tommaso, L.; Franchi, G.; Park, Y.N.; Destro, A.; Morenghi, E.; Montorsi, M.; Torzilli, G.; Tommasini, M.; Terracciono, L.; Tornillo, L.; et al. Diagnostic value of HSP70, glypican 3, and glutamine synthetase in hepatocellular nodules in cirrhosis. Hepatology 2007, 45, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Osada, T.; Nagashima, I.; Tsuno, N.H.; Kitayama, J.; Nagawa, H. Prognostic significance of glutamine synthetase expression in unifocal advanced hepatocellular carcinoma. J. Hepatol. 2000, 33, 247–253. [Google Scholar] [CrossRef]
- Cadoret, A.; Ovejero, C.; Terris, B.; Souil, E.; Lévy, L.; Lamers, W.H.; Kitajewski, J.; Kahn, A.; Perret, C. New targets of beta-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene 2002, 1, 8293–8301. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-T.; Tsai, S.-M.; Wang, S.-N.; Lin, S.-K.; Wu, S.-H.; Chuang, S.-C.; Wu, S.-H.; Ma, H.; Tsai, L.-Y. Glutathione status in the blood and tissues of patients with virus-originated hepatocellular carcinoma. Clin. Biochem. 2007, 40, 1157–1162. [Google Scholar] [CrossRef]
- Björnson, E.; Mukhopadhyay, B.; Asplund, A.; Pristovsek, N.; Cinar, R.; Romeo, S.; Uhlen, M.; Kunos, G.; Nielsen, J.; Mardinoglu, A. Stratification of Hepatocellular Carcinoma Patients Based on Acetate Utilization. Cell Rep. 2015, 13, 2014–2026. [Google Scholar]
- Holeček, M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. 2018, 15, 33. [Google Scholar] [CrossRef] [Green Version]
- Ericksen, R.E.; Lim, S.L.; McDonnell, E.; Shuen, W.H.; Vadiveloo, M.; Phillip, J.W.; Ding, Z.; Kwok, R.; Lee, P.; Radda, G.K. Loss of BCAA Catabolism during Carcinogenesis Enhances mTORC1 Activity and Promotes Tumor Development and Progression. Cell Metab. 2019, 29, 1151–1165. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Li, C.; Nie, X.; Feng, X.; Chang, W.; Yue, Y.; Tang, H.; Deng, F. Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1H NMR spectroscopy in conjunction with multivariate data analysis. J. Proteom. Res. 2007, 6, 2605–2614. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, S.; Yan, W.; Xia, Y.; Chen, X.; Wang, W.; Zhang, J.; Gao, C.; Peng, C.; Yan, F.; et al. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy. EBioMedicine 2016, 13, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, S.; Miyanishi, K.; Kobune, M.; Kawano, Y.; Hoki, T.; Kubo, T.; Hayashi, T.; Sato, T.; Sato, Y.; Takimoto, R.; et al. Increased Hepatic Oxidative DNA Damage in Patients with Nonalcoholic Steatohepatitis Who Develop Hepatocellular Carcinoma. J. Gastroenterol. 2013, 48, 1249–1258. [Google Scholar] [CrossRef]
- Simile, M.M.; Latte, G.; Feo, C.F.; Feo, C.F.; Feo, F.; Calvisi, D.F.; Pascale, R.M. Alterations of methionine metabolism in hepatocarcinogenesis: The emergent role of glycine N-methyltransferase in liver injury. Ann. Gastroenterol. 2018, 31, 552–560. [Google Scholar] [CrossRef]
- Lin, W.-C.; Chakraborty, A.; Huang, S.-C.; Wang, P.-Y.; Hsiek, Y.-J.; Chien, K.-Y.; Lee, Y.-H.; Chang, C.-C.; Tang, H.-Y.; Lin, Y.-T.; et al. Histidine-Dependent Protein Methylation Is Required for Compartmentalization of CTP Synthase. Cell Rep. 2018, 24, 2733–2745. [Google Scholar] [CrossRef] [Green Version]
- Glunde, K.; Bhujwalla, Z.M.; Ronen, S.M. Choline metabolism in malignant transformation. Nat. Rev. Cancer. 2011, 11, 835–848. [Google Scholar] [CrossRef] [Green Version]
- Kiss, Z. Regulation of Mitogenesis by Water-Soluble Phospholipid Intermediates. Cell. Signal. 1999, 11, 149–157. [Google Scholar] [CrossRef]
- Lin, X.-M.; Hu, L.; Gu, J.; Wang, R.-Y.; Li, L.; Tang, J.; Zhang, B.-H.; Yan, X.-Z.; Zhu, Y.-J.; Hu, C.-L.; et al. Choline Kinase α Mediates Interactions Between the Epidermal Growth Factor Receptor and Mechanistic Target of Rapamycin Complex 2 in Hepatocellular Carcinoma Cells to Promote Drug Resistance and Xenograft Tumor Progression. Gastroenterology 2017, 152, 1187–1202. [Google Scholar] [CrossRef]
- Kwee, S.A.; Wong, L.; Chan, O.T.M.; Kalathil, S.; Tsai, N. PET/CT with 18F Fluorocholine as an Imaging Biomarker for Chronic Liver Disease: A Preliminary Radiopathologic Correspondence Study in Patients with Liver Cancer. Radiology 2018, 287, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Van der Veen, J.N.; Kennelly, J.P.; Wan, S.; Vance, J.E.; Vance, D.E.; Jacob, R.L. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta. Biomembr. 2017, 1859, 1558–1572. [Google Scholar] [CrossRef]
- Tessitore, L.; Marengo, B.; Vance, D.E.; Papotti, M.; Mussa, A.; Daidone, M.G.; Costa, A. Expression of phosphatidylethanolamine N-methyltransferase in human hepatocellular carcinomas. Oncology 2003, 65, 152–158. [Google Scholar] [CrossRef]
- Calvisi, D.F.; Wang, C.; Ho, C.; Ladu, S.; Lee, S.A.; Mattu, S.; Destefanis, G.; Delogu, S.; Zimmermann, A.; Ericsson, J.; et al. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology 2011, 140, 1071–1083. [Google Scholar] [CrossRef] [Green Version]
- Lambert, J.E.; Ramos-Roman, M.A.; Browning, J.D.; Parks, E.J. Increased de novo Lipogenesis is a Distinct Characteristic of Individuals with Nonalcoholic Fatty Liver Disease. Gastroenterology 2014, 146, 726–735. [Google Scholar] [CrossRef]
- Budhu, A.; Roessler, S.; Zhao, X.; Zu, X.; Forgues, M.; Ji, J.; Karoly, E.; Qin, L.-X.; Ye, Q.-H.; Jia, H.-L.; et al. Integrated metabolite and gene expression profiles identify lipid biomarkers associated with progression of hepatocellular carcinoma and patient outcomes. Gastroenterology 2013, 144, 1066–1075.e1. [Google Scholar] [CrossRef] [Green Version]
- Buechler, C.; Aslanidis, C. Role of lipids in pathophysiology, diagnosis and therapy of hepatocellular carcinoma. Biochim. Biophys. Acta. Mol. Cell. Biol. Lipids 2020, 1865, 158658. [Google Scholar] [CrossRef]
- Hall, Z.; Chiarugi, D.; Charidemou, E.; Lesli, J.; Scott, E.; Pellegrinet, L.; Allison, M.; Mocciaro, G.; Anstee, Q.M.; Evan, G.I.; et al. Lipid remodelling in hepatocyte proliferation and hepatocellular carcinoma. Hepatology 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Che, L.; Pilo, M.G.; Cigliano, A.; Latte, G.; Simile, M.M.; Ribback, R.; Dombrowski, F.; Evert, M.; Chan, X.; Calvisi, D.F. Oncogene dependent requirement of fatty acid synthase in hepatocellular carcinoma. Cell Cycle 2017, 16, 499–507. [Google Scholar] [CrossRef]
- Rousselet, M.C.; Michalak, S.; Dupré, F.; Croué, A.; Bedossa, P.; Saint-André, J.-P.; Calès, P. Sources of variability in histological scoring of chronic viral hepatitis. Hepatology 2005, 41, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.W.-M. Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog. Nucl. Magn. Reson. Spectrosc. 1996, 28, 161–219. [Google Scholar] [CrossRef]
- Human Metabolome Database: Browsing Metabolites. Available online: https://hmdb.ca/metabolites (accessed on 3 March 2018).
- Goldberg, D.E. Genetic Learning in Optimization, Search and Machine Learning; Addisson Wesley: Boston, MA, USA, 1994. [Google Scholar]
- Reeves, C.; Rowe, J.E. Genetic Algorithms: Principles and Perspectives: A Guide to GA Theory; Springer Science & Business Media: Berlin, Germany, 2002. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
Group F0F1 N = 26 | Group F3F4 N = 26 | p-Value | ||
PARAMETERS | ||||
Gender (M:F) | 21:5 | 24:2 | ns | |
Age in years (mean ± SD) | 69.9 ± 10.7 | 70.5 ± 5.9 | ns | |
CLINICAL AND BIOLOGICAL DATA | ||||
Body Mass Index (missing data n = 3) | Normal | 4 | 4 | ns |
Overweight | 11 | 10 | ns | |
Obesity | 10 | 10 | ns | |
Diabetes (missing data n = 5) | Yes | 16 | 19 | ns |
No | 7 | 5 | ns | |
Tobacco (missing data n = 6) | Yes | 7 | 11 | ns |
No | 16 | 12 | ns | |
Blood Alpha-Foeto-Protein (missing data n = 4) | <20ng/mL | 18 | 23 | ns |
20–200ng/mL | 2 | 0 | ns | |
200–1000ng/mL | 1 | 1 | ns | |
>1000ng/mL | 2 | 1 | ns | |
HISTOLOGICAL DATA | ||||
Degree of steatosis in NTT | No | 5 | 1 | ns |
Low (5–33%) | 5 | 6 | ns | |
Moderate (33–66%) | 11 | 14 | ns | |
Severe (>66%) | 5 | 5 | ns | |
Tumor Differentiation (WHO) (missing data n = 1) | Well | 11 | 12 | ns |
Moderate | 14 | 12 | ns | |
Poor | 1 | 1 | ns |
Metabolites | Abbreviations | Chemical Shifts (ppm) | |
AqueousPhase | |||
Carbohydrates/TCA cycle derivatives | Lactate | Lac | 1.31–1.33/4.10–4.11 |
Glucose | Glc | 3.39/3.46/3.51/3.75/4.63/5.22 | |
Glycogen | Gly | 5.38–5.43 | |
Amino Acids and derivatives | Glutamine | Gln | 2.14/2.44 |
Glutamate | Glu | 2.04/2.34 | |
Glutathione | GSx | 2.15/2.54/2.97/3.78 | |
Leucine | Leu | 0.93–0.97 | |
Isoleucine | Isoleu | 0.93–0.97 | |
Valine | Val | 1.02-1.04/2.26 | |
Histidine | His | 7.07–7.11 | |
Sarcosine | Sar | 2.70–2.73 | |
Nucleotides derivatives | Hypoxanthine | 8.20 | |
Nicotinamide Adenine Dinucleotide | NAD | 9.33 | |
Vitamins | Ascorbic acid | Asc A | 4.50 |
Phospholipids Derivatives | Phosphocholine | PC | 3.22 |
Choline derivatives | 3.62–3.68 | ||
Lipid Phase | |||
Phospholipids derivatives | Phosphoethanolamine | PE | 3.05–3.07/3.13 |
Cholesterol | Total cholesterol | TChol | 0.69/0.93–0.94/1.01/1.52–1.54/2.19/2.25/3.49/3.57/3.89 |
Free cholesterol | FChol | 0.94/1.07/1.50/1.79/2.22/3.45/3.48/3.57 | |
Fatty acids | Saturated FA (CH2)n | SFA | 1.24–1.44 |
Monounsaturated FA –CH2CH= | MUFA | 2.02–2.12 | |
Triacylglycerides | TAG | TAG | 4.14–4.34 5.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchard, B.; Teilhet, C.; Abeywickrama Samarakoon, N.; Massoulier, S.; Joubert-Zakeyh, J.; Blouin, C.; Reynes, C.; Sabatier, R.; Biesse-Martin, A.-S.; Vasson, M.-P.; et al. Two Metabolomics Phenotypes of Human Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver Disease According to Fibrosis Severity. Metabolites 2021, 11, 54. https://doi.org/10.3390/metabo11010054
Buchard B, Teilhet C, Abeywickrama Samarakoon N, Massoulier S, Joubert-Zakeyh J, Blouin C, Reynes C, Sabatier R, Biesse-Martin A-S, Vasson M-P, et al. Two Metabolomics Phenotypes of Human Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver Disease According to Fibrosis Severity. Metabolites. 2021; 11(1):54. https://doi.org/10.3390/metabo11010054
Chicago/Turabian StyleBuchard, Benjamin, Camille Teilhet, Natali Abeywickrama Samarakoon, Sylvie Massoulier, Juliette Joubert-Zakeyh, Corinne Blouin, Christelle Reynes, Robert Sabatier, Anne-Sophie Biesse-Martin, Marie-Paule Vasson, and et al. 2021. "Two Metabolomics Phenotypes of Human Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver Disease According to Fibrosis Severity" Metabolites 11, no. 1: 54. https://doi.org/10.3390/metabo11010054