Metabolic Predictors of Equine Performance in Endurance Racing
Abstract
:1. Introduction
2. Results
2.1. Equine Physiological Characteristic
2.2. Endurance Race Triggers Metabolic Shift in Equine Metabolism
2.3. Catabolism of Amino Acids and Lipids as well as Lactate Production Are Enhanced by Endurance Racing
2.4. Endurance Racing Accelerates Clearance of Red Blood Cells as Depicted by Metabolomics
2.5. Feasibility of Using Metabolic Signatures as Predictors of Animal Readiness for Endurance Race
3. Discussion
4. Materials and Methods
4.1. Animal and Competition Information
4.2. Study Design
4.3. Sample Collection
4.4. Clinical Chemistry Measurements
4.5. Metabolic Measurements
4.6. Osmolality Measurements
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawley, J.A.; Lundby, C.; Cotter, J.D.; Burke, L.M. Maximizing Cellular Adaptation to Endurance Exercise in Skeletal Muscle. Cell Metab. 2018, 27, 962–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, R.; Collins, M. What makes champions? A review of the relative contribution of genes and training to sporting success. Br. J. Sports Med. 2012, 46, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Murray, J.K.; Dyson, S.J. Descriptive epidemiology and risk factors for eliminations from Fédération Equestre Internationale endurance rides due to lameness and metabolic reasons (2008–2011). Equine Vet. J. 2014, 46, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Boldyrev, A.A.; Aldini, G.; Derave, W. Physiology and pathophysiology of carnosine. Physiol. Rev. 2013, 93, 1803–1845. [Google Scholar] [CrossRef]
- Nieman, D.C.; Shanely, R.A.; Gillitt, N.D.; Pappan, K.L.; Lila, M.A. Serum metabolic signatures induced by a three-day intensified exercise period persist after 14 h of recovery in runners. J. Proteome Res. 2013, 12, 4577–4584. [Google Scholar] [CrossRef]
- Stander, Z.; Luies, L.; Mienie, L.J.; Keane, K.M.; Howatson, G.; Clifford, T.; Stevenson, E.J.; Loots, D.T. The altered human serum metabolome induced by a marathon. Metabolomics 2018, 14, 150. [Google Scholar] [CrossRef]
- Howe, C.C.F.; Alshehri, A.; Muggeridge, D.; Mullen, A.B.; Boyd, M.; Spendiff, O.; Moir, H.J.; Watson, D.G. Untargeted metabolomics profiling of an 80.5 km simulated treadmill ultramarathon. Metabolites 2018, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Cottin, F.; Metayer, N.; Goachet, A.G.; Julliand, V.; Slawinski, J.; Billat, V.; Barrey, E. Oxygen consumption and gait variables of Arabian endurance horses measured during a field exercise test. Equine Vet. J. 2010, 42, 1–5. [Google Scholar] [CrossRef]
- Prince, A.; Geor, R.; Harris, P.; Hoekstra, K.; Gardner, S.; Hudson, C.; Pagan, J. Comparison of the metabolic responses of trained Arabians and Thoroughbreds during high- and low-intensity exercise. Equine Vet. J. 2010, 34, 95–99. [Google Scholar] [CrossRef]
- Le Moyec, L.; Robert, C.; Triba, M.N.; Bouchemal, N.; Mach, N.; Rivière, J.; Zalachas-Rebours, E.; Barrey, E. A first step toward unraveling the energy metabolism in endurance horses: Comparison of plasma nuclear magnetic resonance metabolomic profiles before and after different endurance race distances. Front. Mol. Biosci. 2019, 6, 6. [Google Scholar] [CrossRef]
- Luck, M.M.; Le Moyec, L.; Barrey, E.; Triba, M.N.; Bouchemal, N.; Savarin, P.; Robert, C. Energetics of endurance exercise in young horses determined by nuclear magnetic resonance metabolomics. Front. Physiol. 2015, 6, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pechlivanis, A.; Kostidis, S.; Saraslanidis, P.; Petridou, A.; Tsalis, G.; Veselkov, K.; Mikros, E.; Mougios, V.; Theodoridis, G.A. 1H NMR study on the short-and long-term impact of two training programs of sprint running on the metabolic fingerprint of human serum. J. Proteome Res. 2013, 12, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Le Moyec, L.; Robert, C.; Triba, M.N.; Billat, V.L.; Mata, X.; Schibler, L.; Barrey, E. Protein catabolism and high lipid metabolism associated with long-distance exercise are revealed by plasma NMR metabolomics in endurance horses. PLoS ONE 2014, 9, e90730. [Google Scholar] [CrossRef] [Green Version]
- Monitoring Metabolic Status. Available online: https://www.ncbi.nlm.nih.gov/books/NBK215705/ (accessed on 21 July 2020).
- Mach, N.; Ramayo-Caldas, Y.; Clark, A.; Moroldo, M.; Robert, C.; Barrey, E.; López, J.M.; Le Moyec, L. Understanding the response to endurance exercise using a systems biology approach: Combining blood metabolomics, transcriptomics and miRNomics in horses. BMC Genom. 2017, 18, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halama, A. Metabolomics in cell culture—A strategy to study crucial metabolic pathways in cancer development and the response to treatment. Arch. Biochem. Biophys. 2014, 564, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Hallen, A.; Jamie, J.F.; Cooper, A.J.L. Lysine metabolism in mammalian brain: An update on the importance of recent discoveries. Amino Acids 2013, 45, 1249–1272. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2001. [Google Scholar]
- Hofner, B.; Boccuto, L.; Göker, M. Controlling false discoveries in high-dimensional situations: Boosting with stability selection. BMC Bioinform. 2015, 16, 144. [Google Scholar] [CrossRef] [Green Version]
- Karl, J.P.; Margolis, L.M.; Murphy, N.E.; Carrigan, C.T.; Castellani, J.W.; Madslien, E.H.; Teien, H.K.; Martini, S.; Montain, S.J.; Pasiakos, S.M. Military training elicits marked increases in plasma metabolomic signatures of energy metabolism, lipolysis, fatty acid oxidation, and ketogenesis. Physiol. Rep. 2017, 5, e13407. [Google Scholar] [CrossRef]
- Ueda, T.; Tozaki, T.; Nozawa, S.; Kinoshita, K.; Gawahara, H. Identification of metabolomic changes in horse plasma after racing by liquid chromatography-high resolution mass spectrometry as a strategy for doping testing. J. Equine Sci. 2019, 30, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Schowen, R.L. Principles of Biochemistry, 2nd ed.; Lehninger, A.L., Nelson, D.L., Cox, M.M., Eds.; ACS Publications: Washington, DC, USA, 1993; Volume 70, p. A223. [Google Scholar]
- Wanders, R.J.A.; Komen, J.; Kemp, S. Fatty acid omega-oxidation as a rescue pathway for fatty acid oxidation disorders in humans. FEBS J. 2011, 278, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.; Lindgren, J.Å.; Dahlén, S.E.; Hedqvist, P.; Samuelsson, B. Identification and biological activity of novel ω-oxidized metabolites of leukotriene B4 from human leukocytes. FEBS Lett. 1981, 130, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Speijer, D.; Manjeri, G.R.; Szklarczyk, R. How to deal with oxygen radicals stemming from mitochondrial fatty acid oxidation. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aruoma, O.I.; Halliwell, B.; Hoey, B.M.; Butler, J. The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem. J. 1988, 256, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Jong, C.J.; Azuma, J.; Schaffer, S. Mechanism underlying the antioxidant activity of taurine: Prevention of mitochondrial oxidant production. Amino Acids 2012, 42, 2223–2232. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, Y.; Murakami, T.; Nakai, N.; Nagasaki, M.; Harris, R.A. Exercise promotes BCAA catabolism: Effects of BCAA supplementation on skeletal muscle during exercise. J. Nutr. 2004, 134, 1583S–1587S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philp, A.; Macdonald, A.L.; Watt, P.W. Lactate-A signal coordinating cell and systemic function. J. Exp. Biol. 2005, 208, 4561–4575. [Google Scholar] [CrossRef] [Green Version]
- Nalbandian, M.; Takeda, M. Lactate as a signaling molecule that regulates exercise-induced adaptations. Biology (Basel) 2016, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, K.; Koba, T.; Hamada, K.; Tsujimoto, H.; Mitsuzono, R. Branched-chain amino acid supplementation increases the lactate threshold during an incremental exercise test in trained individuals. J. Nutr. Sci. Vitaminol. (Tokyo) 2009, 55, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Hennig, B.; Toborek, M.; Hennig, B.; Toborek, M.; McClain, C.J.; McClain, C.J. High-Energy Diets, Fatty Acids and Endothelial Cell Function: Implications for Atherosclerosis. J. Am. Coll. Nutr. 2001, 20, 97–105. [Google Scholar] [CrossRef]
- Jee, H.; Jin, Y. Effects of prolonged endurance exercise on vascular endothelial and inflammation markers. J. Sport. Sci. Med. 2012, 11, 719–726. [Google Scholar]
- Dinicolantonio, J.J.; O’Keefe, J.H. Importance of maintaining a low omega-6/omega-3 ratio for reducing inflammation. Open Hear. 2018, 5, e000946. [Google Scholar] [CrossRef] [PubMed]
- Appiah-Amponsah, E.; Shanaiah, N.; Nagana Gowda, G.A.; Owusu-Sarfo, K.; Ye, T.; Raftery, D. Identification of 4-deoxythreonic acid present in human urine using HPLC and NMR techniques. J. Pharm. Biomed. Anal. 2009, 50, 878–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, A.; Molinaro, A.; Ståhlman, M.; Khan, M.T.; Schmidt, C.; Mannerås-Holm, L.; Wu, H.; Carreras, A.; Jeong, H.; Olofsson, L.E.; et al. Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. Cell 2018, 175, 947–961.e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, T.; Ito, Y.; Nagasawa, T. Regulatory effects of the L-lysine metabolites, L-2-aminoadipic acid and L-pipecolic acid, on protein turnover in C2C12 myotubes. Biosci. Biotechnol. Biochem. 2016, 80, 2168–2175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knuiman, P.; Hopman, M.T.E.; Verbruggen, C.; Mensink, M. Protein and the adaptive response with endurance training: Wishful thinking or a competitive edge? Front. Physiol. 2018, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Evans, A.M.; DeHaven, C.D.; Barrett, T.; Mitchell, M.; Milgram, E. Integrated, Nontargeted Ultrahigh Performance Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry Platform for the Identification and Relative Quantification of the Small-Molecule Complement of Biological Systems. Anal. Chem. 2009, 81, 6656–6667. [Google Scholar] [CrossRef]
- Dehaven, C.D.; Evans, A.M.; Dai, H.; Lawton, K.A. Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J. Cheminform. 2010, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Evans AM High Resolution Mass Spectrometry Improves Data Quantity and Quality as Compared to Unit Mass Resolution Mass Spectrometry in High- Throughput Profiling Metabolomics. Metabolomics 2014, 4. [CrossRef]
- Halama, A.; Kulinski, M.; Dib, S.S.; Zaghlool, S.B.; Siveen, K.S.; Iskandarani, A.; Zierer, J.; Prabhu, K.S.; Satheesh, N.J.; Bhagwat, A.M.; et al. Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis. Cancer Lett. 2018, 430, 133–147. [Google Scholar] [CrossRef]
Average [± S.D.] | |||||
---|---|---|---|---|---|
All | Finishers | Lameness | Metabolic | p-Value | |
Age | 11.79 [3.36] | 11.82 [3.28] | 11.55 [3.11] | 11.67 [3.68] | NS |
HR BR | 50.02 [13.50] | 38.96 [6.30] | 42.23 [6.81] | 39.73 [6.45] | NS |
HR AR | 60.23 [11.04] | 54.09 [5.02] | 57.64 [6.98] | 73.07 [11.91] | 1.18 × 10−8 |
ALB BR | 33.54 [2.37] | 34.31 [2.18] | 32.60 [2.33] | 33.61 [2.27] | NA |
ALB AR | 38.90 [ 4.60] | 38.84 [3.96] | 36.87 [4.35] | 41.67 [4.39] | 5.90 × 10−3 |
ALP BR | 6.92 [3.19] | 7.50 [3.06] | 5.90 [3.34] | 7.38 [2.85] | NA |
ALP AR | 8.26 [8.43] | 6.42 [3.72] | 9.38 [11.28] | 9.56 [8.65] | NA |
ALT BR | 11.16 [8.55] | 9.88 [4.07] | 9.73 [4.32] | 14.96 [14.49] | NA |
ALT AR | 27.82 [29.25] | 26.83 [26.10] | 24.49 [32.37] | 33.68 [28.54] | NA |
AST BR | 339.49 [166.01] | 304.33 [54.42] | 330.43 [106.68] | 404.13 [282.05] | NA |
AST AR | 532.31 [391.83] | 493.48 [321.54] | 500.46 [363.79] | 632.38 [492.88] | NA |
BIL BR | 23.63 [9.78] | 22.23 [9.73] | 22.14 [7.38] | 27.69 [11.35] | NA |
BIL AR | 43.71 [15.30] | 42.47 [12.86] | 38.00 [11.80] | 53.06 [18.15] | 9.49 × 10−3 |
CREA BR | 105.72 [19.01] | 104.88 [20.97] | 105.81 [21.20] | 106.88 [11.25] | NA |
CREA AR | 152.89 [39.96] | 145.63 [30.14] | 145.62 [43.88] | 173.31 [40.40] | NA |
GGT BR | 19.25 [6.85] | 19.50 [5.82] | 18.52 [6.09] | 19.81 [8.86] | NA |
GGT AR | 21.93 [10.38] | 23.58 [13.36] | 18.95 [5.76] | 23.38 [9.04] | NA |
GLU BR | 6.25 [1.15] | 6.48 [1.35] | 6.10 [1.05] | 6.11 [0.87] | NA |
GLU AR | 6.21 [2.08] | 5.77 [2.05] | 6.87 [2.15] | 6.01 [1.78] | NA |
LACT BR | 0.67 [0.58] | 0.81 [0.89] | 0.59 [0.16] | 0.57 [0.13] | NA |
LACT AR | 3.19 [2.24] | 2.87 [0.91] | 2.27 [1.56] | 4.87 [3.26] | 9.43 × 10−4 |
LDH BR | 497.44 [145.61] | 533.17 [106.41] | 486.81 [137.68] | 457.81 [187.97] | NA |
LDH AR | 876.66 [394.24] | 930.33 [327.54] | 692.33 [318.54] | 1038.06 [472.76] | 1.97 × 10−2 |
PHOS BR | 0.86 [0.19] | 0.83 [0.18] | 0.89 [0.20] | 0.87 [0.18] | NA |
PHOS AR | 1.20 [0.43] | 1.25 [0.46] | 1.09 [0.34] | 1.26 [0.48] | NA |
BUN BR | 4.99 [1.02] | 5.18 [1.02] | 5.13 [1.03] | 4.53 [1.87] | NA |
BUN AR | 7.74 [1.60] | 8.44 [1.09] | 7.09 [0.77] | 7.56 [1.50] | 1.42 × 10−2 |
TP BR | 119.21 [38.48] | 126.21 [43.47] | 113.43 [32.44] | 116.31 [36.12] | NA |
TP AR | 108.16 [20.51] | 106.83 [21.08] | 104.19 [21.06] | 115.38 [16.74] | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halama, A.; Oliveira, J.M.; Filho, S.A.; Qasim, M.; Achkar, I.W.; Johnson, S.; Suhre, K.; Vinardell, T. Metabolic Predictors of Equine Performance in Endurance Racing. Metabolites 2021, 11, 82. https://doi.org/10.3390/metabo11020082
Halama A, Oliveira JM, Filho SA, Qasim M, Achkar IW, Johnson S, Suhre K, Vinardell T. Metabolic Predictors of Equine Performance in Endurance Racing. Metabolites. 2021; 11(2):82. https://doi.org/10.3390/metabo11020082
Chicago/Turabian StyleHalama, Anna, Joao M. Oliveira, Silvio A. Filho, Muhammad Qasim, Iman W. Achkar, Sarah Johnson, Karsten Suhre, and Tatiana Vinardell. 2021. "Metabolic Predictors of Equine Performance in Endurance Racing" Metabolites 11, no. 2: 82. https://doi.org/10.3390/metabo11020082
APA StyleHalama, A., Oliveira, J. M., Filho, S. A., Qasim, M., Achkar, I. W., Johnson, S., Suhre, K., & Vinardell, T. (2021). Metabolic Predictors of Equine Performance in Endurance Racing. Metabolites, 11(2), 82. https://doi.org/10.3390/metabo11020082