Vitamin D Metabolites and Sex Steroid Indices in Postmenopausal Women with and without Low Bone Mass
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Biochemical Analysis
4.3. Anthropometrics and DXA
4.4. Calculations Used
- FAI = Total testosterone/SHBG × 100
- FEI = Total estradiol/SHBG × 100
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ansari, M.G.A.; Sabico, S.; Clerici, M.; Khattak, M.N.K.; Wani, K.; Al-Musharaf, S.; Amer, O.E.; Alokail, M.S.; Al-Daghri, N.M. Vitamin D Supplementation Is Associated with Increased Glutathione Peroxidase-1 Levels in Arab Adults with Prediabetes. Antioxidants 2020, 9, 118. [Google Scholar] [CrossRef]
- Gembillo, G.; Cernaro, V.; Siligato, R.; Curreri, F.; Catalano, A.; Santoro, D. Vitamin D in renal tubulopathies. Metabolites 2020, 10, 115. [Google Scholar] [CrossRef]
- Charoenggam, N.; Holick, M.F. Immunologic effects of vitamin D on human health and disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Amer, O.E.; Khattak, M.N.K.; Sabico, S.; Ansari, M.G.A.; Al-Saleh, Y.; Aljohani, N.; Alfawaz, H.; Alokail, M.S. Effects of different vitamin D supplementation strategies in reversing metabolic syndrome and its component risk factors in adolescents. J. Steroid Biochem. Mol. Biol. 2019, 191, 105378. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Mohammed, A.K.; Al-Attas, O.S.; Ansari, M.G.A.; Wani, K.; Hussain, S.D.; Sabico, S.; Tripathi, G.; Alokail, M.S. Vitamin D Receptor Gene Polymorphisms Modify Cardiometabolic Response to Vitamin D Supplementation in T2DM Patients. Sci. Rep. 2017, 7, 8280. [Google Scholar] [CrossRef]
- Ibrahim, M.K.M.; Elnimeiri, M.K.M. Non-classical presentation of vitamin D deficiency: A case report. J. Med. Case Rep. 2020, 14, 126. [Google Scholar] [CrossRef]
- Al Saleh, Y.; El Seid, M.E.; Ruhaiyem, M.E.; Al Sayed, F.; Alkhairy, A.; Al Zaid, S.; Al Sayed, O.; Salih, S.; Al-Daghri, N.M. Characteristics and outcomes of osteoporotic hip fractures: Treatment gaps in a tertiary care center in Riyadh, Saudi Arabia. Aging Clin. Exp. Res. 2019, 32, 1689–1695. [Google Scholar] [CrossRef]
- Siafarikas, A.; Simm, P.; Zacharin, M.; Jefferies, C.; Lafferty, A.R.; Wheeler, B.J.; Tham, E.; Brown, J.; Biggin, A.; Hofman, P.; et al. Global consensus on nutritional rickets: Implications for Australia. J. Paediatr. Child Health 2020, 56, 841–846. [Google Scholar] [CrossRef]
- Al-Daghri, N.M. Vitamin D in Saudi Arabia: Prevalence, distribution and disease associations. J. Steroid Biochem. Mol. Biol. 2018, 175, 102–107. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Al-Attas, O.S.; Al-Okail, M.S.; Alkharfy, K.M.; Al-Yousef, M.A.; Nadhrah, H.M.; Sabico, S.B.; Chrousos, G.P. Severe hypovitaminosis D is widespread and more common in non-diabetics than diabetics in Saudi adults. Saudi Med. J. 2010, 31, 775–780. [Google Scholar]
- Barzanji, A.T.; Alamri, F.A.; Mohamed, A.G. Osteoporosis: A study of knowledge, attitude and practice among adults in Riyadh, Saudi Arabia. J. Community Health 2013, 38, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Alwahhabi, B.K. Osteoporosis in Saudi Arabia. Are we doing enough? Saudi Med. J. 2015, 36, 1149–1150. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D.; Malmstroem, S.; Schwartz, J. Current Controversies: Are Free Vitamin Metabolite Levels a More Accurate Assessment of Vitamin D Status than Total Levels? Endocrinol. Metab. Clin. N. Am. 2017, 46, 901–918. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R. Free or Total 25OHD as Marker for Vitamin D Status? J. Bone Miner. Res. 2016, 31, 1124–1127. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.; Bouillon, R.; Thadhani, R.; Schoenmakers, I. Vitamin D metabolites in captivity? Should we measure free or total 25(OH)D to assess vitamin D status? J. Steroid Biochem. Mol. Biol. 2017, 173, 105–116. [Google Scholar] [CrossRef]
- Holick, M.F. Bioavailability of vitamin D and its metabolites in black and white adults. N. Engl. J. Med. 2013, 369, 2047–2048. [Google Scholar] [CrossRef]
- Riggs, B.L.; Khosla, S.; Melton, L.J., 3rd. Sex steroids and the construction and conservation of the adult skeleton. Endocr. Rev. 2002, 23, 279–302. [Google Scholar] [CrossRef]
- Khosla, S.; Melton, L.J., 3rd; Atkinson, E.J.; O’Fallon, W.M.; Klee, G.G.; Riggs, B.L. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: A key role for bioavailable estrogen. J. Clin. Endocrinol. Metab. 1998, 83, 2266–2274. [Google Scholar]
- Bhattarai, H.K.; Shrestha, S.; Rokka, K.; Shakya, R. Vitamin D, Calcium, Parathyroid Hormone, and Sex Steroids in Bone Health and Effects of Aging. J. Osteoporos 2020, 2020, 9324505. [Google Scholar] [CrossRef]
- Zhang, Z.; Kang, D.; Li, H. The effects of testosterone on bone health in males with testosterone deficiency: A systematic review and meta-analysis. BMC Endocr. Disord. 2020, 20, 33. [Google Scholar] [CrossRef]
- Simo, R.; Saez-Lopez, C.; Barbosa-Desongles, A.; Hernandez, C.; Selva, D.M. Novel insights in SHBG regulation and clinical implications. Trends Endocrinol. Metab. 2015, 26, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Jiang, J.; Yang, F.; Huang, J.; Zhao, J.; Yan, S. Genetically Predicted Sex Hormone-Binding Globulin and Bone Mineral Density: A Mendelian Randomization Study. Calcif. Tissue Int. 2020, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Velija-Asimi, Z. Evaluation of the association of vitamin D deficiency with gonadotropins and sex hormone in obese and non-obese women with polycystic ovary syndrome. Med. Glas. 2014, 11, 170–176. [Google Scholar]
- Pilz, S.; Frisch, S.; Koertke, H.; Kuhn, J.; Dreier, J.; Obermayer-Pietsch, B.; Wehr, E.; Zittermann, A. Effect of vitamin D supplementation on testosterone levels in men. Horm. Metab. Res. 2011, 43, 223–225. [Google Scholar] [CrossRef] [PubMed]
- Eliades, M.; Spyrou, E. Vitamin D: A new player in non-alcoholic fatty liver disease? World J. Gastroenterol. 2015, 21, 1718–1727. [Google Scholar] [CrossRef]
- Heijboer, A.C.; Oosterwerff, M.; Schroten, N.F.; Eekhoff, E.M.; Chel, V.G.; de Boer, R.A.; Blankenstein, M.A.; Lips, P. Vitamin D supplementation and testosterone concentrations in male human subjects. Clin. Endocrinol. 2015, 83, 105–110. [Google Scholar] [CrossRef]
- Ghaleb, A.; Abdi, S.; Yakout, S.; Hussain, S.D.; Wani, K.; Masoud, M.; Alnaami, M.; Al-Daghri, N.M. Serum iron deficiency as an independent risk factor for osteoporosis in postmenopausal Arab women. J. King Saud Univ. Sci. 2021, 33, 101217. [Google Scholar] [CrossRef]
- Wani, K.; Yakout, S.M.; Ansari, M.G.A.; Sabico, S.; Hussain, S.D.; Alokail, M.S.; Shesha, E.; Aljohani, N.J.; Al-Saleh, Y.; Reginster, J.-Y.; et al. Metabolic syndrome in Arab adults with low bone mineral density. Nutrients 2019, 11, 1405. [Google Scholar] [CrossRef]
- Powe, C.E.; Ricciardi, C.; Berg, A.H.; Erdenesanaa, D.; Collerone, G.; Ankers, E.; Wenger, J.; Karumanchi, S.A.; Thadhani, R.; Bhan, I. Vitamin D-binding protein modifies the vitamin D-bone mineral density relationship. J. Bone Miner. Res. 2011, 26, 1609–1616. [Google Scholar] [CrossRef]
- Saleh, Y.; Beshyah, S.A.; Hussein, W.; Almadani, A.; Hassoun, A.; Al Mamari, A.; Ba-Essa, E.; Al-Dhafiri, E.; Hassanein, M.; Fouda, M.A.; et al. Diagnosis and management of vitamin D deficiency in the Gulf Cooperative Council (GCC) countries: An expert consensus summary statement from the GCC vitamin D advisory board. Arch. Osteoporos 2020, 15, 35. [Google Scholar] [CrossRef]
- Al-Saleh, Y.; Sulimani, R.; Sabico, S.; Raef, H.; Fouda, M.; Alshahrani, F.; Al Shaker, M.; Al Wahabi, B.; Sadat-Ali, M.; Al Rayes, H.; et al. 2015 Guidelines for Osteoporosis in Saudi Arabia: Recommendations from the Saudi Osteoporosis Society. Ann. Saudi Med. 2015, 35, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Al-Saleh, Y.; Al-Daghri, N.M.; Sabico, S.; Alessa, T.; Al Emadi, S.; Alawadi, F.; Al Qasaabi, S.; Alfutaisi, A.; Al Izzi, M.; Mukhaimer, J.; et al. Diagnosis and management of osteoporosis in postmenopausal women in Gulf Cooperation Council (GCC) countries: Consensus statement of the GCC countries’ osteoporosis societies under the auspices of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Arch. Osteoporos 2020, 15, 109. [Google Scholar] [PubMed]
Clinical Parameters | Normal | Low BMD | p-Values | Adj. p-Values * |
---|---|---|---|---|
N | 80 (42.3) | 109 (57.7) | ||
Vitamin D Deficiency (%) | 36 (45.0) | 43 (39.4) | ||
Age (years) | 53.3 ± 7.7 | 57.0 ± 8.2 | <0.001 | |
BMI (kg/m2) | 34.1 ± 5.8 | 32.4 ± 6.2 | <0.001 | |
Age of menarche | 13.0 ± 1.4 | 13.3 ± 1.6 | 0.001 | 0.006 |
Menopause (years) | 9.6 ± 11.7 | 11.4 ± 10.6 | 0.01 | 0.30 |
Age during first pregnancy | 19.7 ± 4.0 | 19.0 ± 3.6 | 0.006 | 0.005 |
Amenorrhea (years) | 7.1 ± 6.0 | 9.7 ± 7.1 | <0.001 | 0.01 |
T-score (Spine) | 0.0 ± 0.8 | −2.1 ± 0.9 | <0.001 | <0.001 |
T-Score (Femur) | 0.6 ± 0.9 | −0.8 ± 1.0 | <0.001 | <0.001 |
BMD (Spine) | 1.21 ± 0.14 | 0.9 ± 0.1 | <0.001 | <0.001 |
BMD (Femur) | 1.13 ± 0.13 | 0.9 ± 0.1 | <0.001 | <0.001 |
Biochemical Parameters | Reference Ranges | Normal | Low BMD | p-Values | Adj. p-Values * |
---|---|---|---|---|---|
N | -- | 80 (42.3) | 109 (57.7) | -- | -- |
Corrected Calcium (mmol/L) | 0.7–4.0 | 2.3 ± 0.2 | 2.3 ± 0.2 | 0.84 | 0.40 |
25(OH) D (nmol/L) | 7.5–175.0 | 66.4 ± 34.2 | 73.5 ± 36.1 | <0.001 | 0.18 |
Bioavailable 25(OH)D (nmol/L) # | -- | 26.1 (13–51) | 29.1 (14–49) | 0.56 | 0.81 |
Free 25(OH)D (nmol/L) # | -- | 30.2 (15–54.1) | 33.4 (16–64) | 0.42 | 0.62 |
VDBP (mg/mL) # | 0.083–50.0 | 42.0 (7–105) | 23.2 (6–106) | 0.27 | 0.25 |
PTH (pg/mL) # | 1.2–5000.0 | 10.6 (6–20) | 15.4 (8–30) | 0.002 | 0.04 |
SHBG (nmol/L) # | 0.8–200.0 | 18.2 (0.4–34) | 32.3 (1–57) | 0.007 | 0.08 |
FSH (mIU/mL) # | 0.1–200.0 | 30.7 (11–51) | 40.6 (21–66) | 0.002 | 0.29 |
Testosterone (ng/mL) # | 0.02–15.0 | 0.7 (0.4–1) | 0.6 (0.3–0.9) | 0.007 | 0.02 |
Estradiol (pg/mL) # | 5.0–4300.0 | 108.7 (43–247) | 61.8 (33–196) | 0.02 | 0.13 |
FAI # | -- | 4.3 (1–182) | 1.5 (0.6–39) | 0.002 | 0.07 |
FEI # | -- | 307.7 (142–24168) | 182.2 (62–3988) | 0.007 | 0.09 |
FT (nmol/L) # | -- | 0.06 (0.04–0.17) | 0.0 (0.0–0.1) | 0.003 | 0.20 |
BT (pmol/L × 10−4) # | -- | 2.8 (2–9) | 2.0 (1–4) | 0.002 | 0.03 |
Biochemical Parameters | Reference Ranges | Normal | Low BMD | p-Values | Adj. p-Values * |
---|---|---|---|---|---|
N | -- | 80 (42.3) | 109 (57.7) | -- | -- |
P1NP (ng/mL) # | 5–1200 | 11.2 (5.0–30.0) | 13.4 (5.0–27.5) | 0.44 | 0.20 |
CTX (pg/mL) # | 10–6000 | 10.0 (10.0–84.5) | 20.0 (10.0–75.0) | 0.42 | 0.16 |
NTX (nmol/L) # | 20–3000 | 56.2 (42.6–75.5) | 49.8 (35.5–65.2) | 0.06 | 0.05 |
bALP (nmol/L) | -- | 1.1 ± 0.3 | 1.1 ± 0.3 | 0.98 | 0.75 |
Parameters | Total 25(OH)D | Bioavailable 25(OH)D | Free 25(OH)D | ||||||
---|---|---|---|---|---|---|---|---|---|
All | Normal | Low BMD | All | Normal | Low BMD | All | Normal | Low BMD | |
SHBG | 0.13 | 0.07 | 0.02 | −0.27 ** | −0.30 * | −0.26 ** | −0.21 ** | −0.24 | −0.20 * |
FSH | 0.17 * | 0.16 | 0.08 | −0.12 | −0.23 | −0.06 | −0.09 | −0.09 | −0.08 |
Testosterone | 0.10 | 0.21 | 0.04 | 0.38 ** | 0.45 ** | 0.34 ** | 0.37 ** | 0.44 ** | 0.33 ** |
BT | 0.04 | 0.14 | 0.07 | 0.38 ** | 0.48 ** | 0.35 ** | 0.34 ** | 0.41 ** | 0.32 ** |
FT | −0.01 | 0.11 | 0.05 | 0.33 ** | 0.44 ** | 0.30 ** | 0.34 ** | 0.46 ** | 0.31 ** |
Estradiol | 0.01 | 0.03 | 0.06 | 0.39 ** | 0.46 ** | 0.34 ** | 0.45 ** | 0.46 ** | 0.43 ** |
FAI | −0.05 | 0.04 | 0.03 | 0.34 ** | 0.43 ** | 0.32 ** | 0.29 ** | 0.35 ** | 0.27 ** |
FEI | −0.06 | −0.04 | 0.05 | 0.35 ** | 0.41 ** | 0.33 ** | 0.38 ** | 0.40 ** | 0.37 ** |
P1NP | 0.07 | 0.13 | 0.03 | −0.40 ** | −0.35 ** | −0.42 ** | −0.41 ** | −0.36 ** | −0.43 ** |
CTX | 0.09 | −0.01 | 0.12 | −0.23 ** | −0.33 ** | −0.19 | −0.24 ** | −0.35 ** | −0.18 |
NTX | −0.06 | −0.09 | −0.03 | −0.05 | −0.16 | −0.01 | −0.07 | −0.19 | −0.02 |
bALP | −0.08 | −0.16 | −0.02 | −0.11 | −0.36 | 0.10 | −0.12 | −0.38 ** | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Daghri, N.M.; Yakout, S.M.; Ansari, M.G.A.; Hussain, S.D.; Wani, K.A.; Sabico, S. Vitamin D Metabolites and Sex Steroid Indices in Postmenopausal Women with and without Low Bone Mass. Metabolites 2021, 11, 86. https://doi.org/10.3390/metabo11020086
Al-Daghri NM, Yakout SM, Ansari MGA, Hussain SD, Wani KA, Sabico S. Vitamin D Metabolites and Sex Steroid Indices in Postmenopausal Women with and without Low Bone Mass. Metabolites. 2021; 11(2):86. https://doi.org/10.3390/metabo11020086
Chicago/Turabian StyleAl-Daghri, Nasser M., Sobhy M. Yakout, Mohammed G.A. Ansari, Syed D. Hussain, Kaiser A. Wani, and Shaun Sabico. 2021. "Vitamin D Metabolites and Sex Steroid Indices in Postmenopausal Women with and without Low Bone Mass" Metabolites 11, no. 2: 86. https://doi.org/10.3390/metabo11020086
APA StyleAl-Daghri, N. M., Yakout, S. M., Ansari, M. G. A., Hussain, S. D., Wani, K. A., & Sabico, S. (2021). Vitamin D Metabolites and Sex Steroid Indices in Postmenopausal Women with and without Low Bone Mass. Metabolites, 11(2), 86. https://doi.org/10.3390/metabo11020086