Alterations of Extracellular Matrix Components in the Course of Juvenile Idiopathic Arthritis
Abstract
:1. Introduction
2. Matrix Metalloproteinases
3. ADAM and ADAMTS
4. Reactive Oxygen and Nitrogen Species
5. Anabolic Changes in ECM
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, K.H.; Kim, D.S. Juvenile idiopathic arthritis: Diagnosis and differential diagnosis. Korean J. Pediatr. 2010, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosdósi, B. Juvenile idiopathic arthritis: From diagnosis to treatment. Lege Artis Med. 2018, 28, 152. [Google Scholar]
- Kahn, P. Juvenile idiopathic arthritis: An update for the clinician. Bull. Nyu Hosp. Jt. Dis. 2012, 70, 152–166. [Google Scholar] [PubMed]
- Nigrovic, P.A.; Raychaudhuri, S.; Thompson, S.D. Review: Genetics and the Classification of Arthritis in Adults and Children. Arthritis Rheumatol. 2018, 70, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.L. New advances in juvenile idiopathic arthritis. Chang. Gung Med. J. 2012, 35, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Martini, A.; Ravelli, A.; Avcin, T.; Beresford, M.W.; Burgos-Vargas, R.; Cuttica, R.; Ilowite, N.T.; Khubchandani, R.; Laxer, R.M.; Lovell, D.J.; et al. Toward new classification criteria for juvenile idiopathic arthritis: First steps, pediatric rheumatology international trials organization international consensus. J. Rheumatol. 2019, 46, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Rigante, D.; Bosco, A.; Esposito, S. The Etiology of Juvenile Idiopathic Arthritis. Clin. Rev. Allergy Immunol. 2015, 49, 253–261. [Google Scholar] [CrossRef]
- Aslan, M.; Kasapcopur, O.; Yasar, H.; Polat, E.; Saribas, S.; Cakan, H.; Dirican, A.; Torun, M.M.; Arısoy, N.; Kocazeybek, B. Do infections trigger juvenile idiopathic arthritis? Rheumatol. Int. 2011, 31, 215–220. [Google Scholar] [CrossRef]
- Kalinina Ayuso, V.; Makhotkina, N.; van Tent-Hoeve, M.; de Groot-Mijnes, J.D.F.; Wulffraat, N.M.; Rothova, A.; de Boer, J.H. Pathogenesis of juvenile idiopathic arthritis associated uveitis: The known and unknown. Surv. Ophthalmol. 2014, 59, 517–531. [Google Scholar] [CrossRef]
- Lin, Y.T.; Wang, C.T.; Gershwin, M.E.; Chiang, B.L. The pathogenesis of oligoarticular/polyarticular vs systemic juvenile idiopathic arthritis. Autoimmun. Rev. 2011, 10, 482–489. [Google Scholar] [CrossRef]
- Kapoor, M.; Martel-Pelletier, J.; Lajeunesse, D.; Pelletier, J.P.; Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 2011, 7, 33–42. [Google Scholar] [CrossRef]
- Wojdasiewicz, P.; Poniatowski, Ł.A.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat. Inflamm. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- De Jager, W.; Hoppenreijs, E.P.A.H.; Wulffraat, N.M.; Wedderburn, L.R.; Kuis, W.; Prakken, B.J. Blood and synovial fluid cytokine signatures in patients with juvenile idiopathic arthritis: A cross-sectional study. Ann. Rheum. Dis. 2007, 66, 589–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellins, E.D.; MacAubas, C.; Grom, A.A. Pathogenesis of systemic juvenile idiopathic arthritis: Some answers, more questions. Nat. Rev. Rheumatol. 2011, 7, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Barut, K.; Adrovic, A.; Şahin, S.; Kasapçopur, Ö. Juvenile idiopathic arthritis. Balk. Med. J. 2017, 34, 90–101. [Google Scholar] [CrossRef]
- Kaminiarczyk, D.; Adamczak, K.; Niedziela, M. Czynniki prozapalne u dzieci z młodzieńczym idiopatycznym zapaleniem stawów. Reumatologia 2010, 48, 62–65. [Google Scholar]
- Hanyecz, A.; Olasz, K.; Tarjanyi, O.; Nemeth, P.; Mikecz, K.; Glant, T.T.; Boldizsar, F. Proteoglycan aggrecan conducting T cell activation and apoptosis in a murine model of rheumatoid arthritis. BioMed Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009, 1. [Google Scholar] [CrossRef]
- Eyre, D. Articular cartilage and changes in Arthritis: Collagen of articular cartilage. Arthritis Res. 2002, 4. [Google Scholar]
- Coates, E.E.; Fisher, J.P. Phenotypic variations in chondrocyte subpopulations and their response to in vitro culture and external stimuli. Ann. Biomed. Eng. 2010, 38, 3371–3388. [Google Scholar] [CrossRef] [PubMed]
- Umlauf, D.; Frank, S.; Pap, T.; Bertrand, J. Cartilage biology, pathology, and repair. Cell. Mol. Life Sci. 2010, 67, 4197–4211. [Google Scholar] [CrossRef] [PubMed]
- Sivan, S.S.; Wachtel, E.; Roughley, P. Structure, function, aging and turnover of aggrecan in the intervertebral disc. Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 3181–3189. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, S.; Huang, J.; Guo, W.; Chen, J.; Zhang, L.; Zhao, B.; Peng, J.; Wang, A.; Wang, Y.; et al. The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. BioMed Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Pomin, V.H.; Mulloy, B. Glycosaminoglycans and proteoglycans. Pharmaceuticals 2018, 11, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vynios, D.H. Metabolism of cartilage proteoglycans in health and disease. BioMed Res. Int. 2014. [Google Scholar] [CrossRef] [Green Version]
- Aspberg, A. The Different Roles of Aggrecan Interaction Domains. J. Histochem. Cytochem. 2012, 60, 987–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, R.C.; Lall, R.; Srivastava, A.; Sinha, A. Hyaluronic acid: Molecular mechanisms and therapeutic trajectory. Front. Vet. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Shigemori, M.; Takei, S.; Imanaka, H.; Maeno, N.; Hokonohara, M.; Miyata, K. Diagnostic significance of increased serum hyaluronic acid in juvenile rheumatoid arthritis. Pediatr. Int. 2002, 44. [Google Scholar] [CrossRef] [PubMed]
- Karsdal, M.A.; Nielsen, M.J.; Sand, J.M.; Henriksen, K.; Genovese, F.; Bay-Jensen, A.C.; Smith, V.; Adamkewicz, J.I.; Christiansen, C.; Leeming, D.J. Extracellular matrix remodeling: The common denominator in connective tissue diseases possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug Dev. Technol. 2013, 11. [Google Scholar] [CrossRef] [Green Version]
- Winsz-Szczotka, K.; Mencner, Ł.; Olczyk, K. Metabolism of glycosaminoglycans in the course of juvenile idiopathic arthritis. Postepy Hig. Med. Dosw. 2016, 70, 135–142. [Google Scholar] [CrossRef]
- Margheri, F.; Laurenzana, A.; Giani, T.; Maggi, L.; Cosmi, L.; Annunziato, F.; Cimaz, R.; Del Rosso, M. The protease systems and their pathogenic role in juvenile idiopathic arthritis. Autoimmun. Rev. 2019, 18, 761–766. [Google Scholar] [CrossRef]
- Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786–801. [Google Scholar] [CrossRef] [PubMed]
- Chiavaroli, V.; Giannini, C.; de Marco, S.; Chiarelli, F.; Mohn, A. Unbalanced oxidant-antioxidant status and its effects in pediatric diseases. Redox Rep. 2011, 16, 101–107. [Google Scholar] [CrossRef]
- Laronha, H.; Carpinteiro, I.; Portugal, J.; Azul, A.; Polido, M.; Petrova, K.T.; Salema-Oom, M.; Caldeira, J. Challenges in matrix metalloproteinases inhibition. Biomolecules 2020, 10, 717. [Google Scholar] [CrossRef]
- Laronha, H.; Caldeira, J. Structure and Function of Human Matrix Metalloproteinases. Cells 2020, 9, 1076. [Google Scholar] [CrossRef] [PubMed]
- Klein, T.; Bischoff, R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids 2011, 41, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res. 2003, 92, 827–839. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Jin, M.; Yang, F.; Zhu, J.; Xiao, Q.; Zhang, L. Matrix metalloproteinases: Inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediat. Inflamm. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loffek, S.; Schilling, O.; Franzke, C.-W. Biological role of matrix metalloproteinases: A critical balance. Eur. Respir. J. 2011, 38, 191–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, G.; Knäuper, V.; Atkinson, S.; Butler, G.; English, W.; Hutton, M.; Stracke, J.; Clark, I. Matrix metalloproteinases in arthritic disease. Arthritis Res. 2002, 4, S39–S49. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Murphy, G.; Troeberg, L. Extracellular regulation of metalloproteinases. Matrix Biol. 2015, 44–46, 255–263. [Google Scholar] [CrossRef]
- Stamenkovic, I. Extracellular matrix remodelling: The role of matrix metalloproteinases. J. Pathol. 2003, 200, 448–464. [Google Scholar] [CrossRef] [PubMed]
- Burrage, P.S.; Mix, K.S.; Brinckerhoff, C.E. Matrix metalloproteinases: Role in arthritis. Front. Biosci. 2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arpino, V.; Brock, M.; Gill, S.E. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol. 2015, 44–46, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Brew, K.; Nagase, H. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. Biochim. Biophys. Acta Mol. Cell Res. 2010, 1803, 55–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagase, H.; Visse, R.; Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 2006, 69, 562–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagase, H.; Kashiwagi, M. Aggrecanases and cartilage matrix degradation. Arthritis Res. Ther. 2003, 5, 94–103. [Google Scholar] [CrossRef]
- Kelwick, R.; Desanlis, I.; Wheeler, G.N.; Edwards, D.R. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol. 2015, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; Bay-Jensen, A.C.; Karsdal, M.A.; Siebuhr, A.S.; Zheng, Q.; Maksymowych, W.P.; Christiansen, T.G.; Henriksen, K. The active form of MMP-3 is a marker of synovial inflammation and cartilage turnover in inflammatory joint diseases. BMC Musculoskelet. Disord. 2014, 15. [Google Scholar] [CrossRef] [Green Version]
- Viswanath, V.; Myles, A.; Dayal, R.; Aggarwal, A. Levels of serum matrix metalloproteinase-3 correlate with disease activity in the enthesitis-related arthritis category of juvenile idiopathic arthritis. J. Rheumatol. 2011, 38, 2482–2487. [Google Scholar] [CrossRef]
- Gattorno, M.; Vignola, S.; Falcini, F.; Sabatini, F.; Buoncompagni, A.; Simonini, G.; Picco, P.; Pistoia, V. Serum and synovial fluid concentrations of matrix metalloproteinases 3 and its tissue inhibitor 1 in juvenile idiopathic arthritides. J. Rheumatol. 2002, 29, 826–831. [Google Scholar]
- Peake, N.J.; Khawaja, K.; Myers, A.; Jones, D.; Cawston, T.E.; Rowan, A.D.; Foster, H.E. Levels of matrix metalloproteinase (MMP)-1 in paired sera and synovial fluids of juvenile idiopathic arthritis patients: Relationship to inflammatory activity, MMP-3 and tissue inhibitor of metalloproteinases-1 in a longitudinal study. Rheumatology 2005, 44, 1383–1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarma, P.K.; Misra, R.; Aggarwal, A. Elevated serum receptor activator of NFκB ligand (RANKL), osteoprotegerin (OPG), matrix metalloproteinase (MMP)3, and ProMMP1 in patients with juvenile idiopathic arthritis. Clin. Rheumatol. 2008, 27, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Winsz-Szczotka, K.; Komosińska-Vassev, K.; Kuźnik-Trocha, K.; Gruenpeter, A.; Lachór-Motyka, I.; Olczyk, K. Influence of proteolytic-antiproteolytic enzymes and prooxidative-antioxidative factors on proteoglycan alterations in children with juvenile idiopathic arthritis. Clin. Biochem. 2014, 47, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Uemura, Y.; Hayashi, H.; Takahashi, T.; Saitho, T.; Umeda, R.; Ichise, Y.; Sendo, S.; Tsuji, G.; Kumagai, S. MMP-3 as a Biomarker of Disease Activity of Rheumatoid Arthritis. Rinsho Byori. Jpn. J. Clin. Pathol. 2015, 63, 1357–1364. [Google Scholar]
- Fadda, S.; Abolkheir, E.; Afifi, R.; Gamal, M. Serum matrix metalloproteinase-3 in rheumatoid arthritis patients: Correlation with disease activity and joint destruction. Egypt. Rheumatol. 2016, 38, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Peake, N.J.; Foster, H.E.; Khawaja, K.; Cawston, T.E.; Rowan, A.D. Assessment of the clinical significance of gelatinase activity in patients with juvenile idiopathic arthritis using quantitative protein substrate zymography. Ann. Rheum. Dis. 2006, 65, 501–507. [Google Scholar] [CrossRef]
- Kobus, A.; Bagińska, J.; Łapińska-Antończuk, J.; Ławicki, S.; Kierklo, A. Levels of Selected Matrix Metalloproteinases, Their Inhibitors in Saliva, and Oral Status in Juvenile Idiopathic Arthritis Patients vs. Healthy Controls. BioMed Res. Int. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brik, R.; Rosen, I.; Savulescu, D.; Borovoi, I.; Gavish, M.; Nagler, R. Salivary antioxidants and metalloproteinases in juvenile idiopathic arthritis. Mol. Med. 2010, 16, 122–128. [Google Scholar] [CrossRef]
- Kajlina, A.N.; Ogorodova, L.M.; Chasovskih, J.P.; Kremer, E.J. Indices of matrix metalloproteinases (MMP-2, MMP-9, TIMP-1) with juvenile arthritis in children. Vestn. Ross. Akad. Meditsinskikh Nauk 2013, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Giannelli, G.; Erriquez, R.; Iannone, F.; Marinosci, F.; Lapadula, G.; Antonaci, S. MMP-2, MMP-9, TIMP-1 and TIMP-2 levels rheumatoid arthritis and psoriatic arthritis. Clin. Exp. Rheumatol. 2004, 22, 335–338. [Google Scholar]
- Agarwal, S.; Misra, R.; Aggarwal, A. Synovial fluid RANKL and matrix metalloproteinase levels in enthesitis related arthritis subtype of juvenile idiopathic arthritis. Rheumatol. Int. 2009, 29, 907–911. [Google Scholar] [CrossRef]
- Souza, J.S.M.; Lisboa, A.B.P.; Santos, T.M.; Andrade, M.V.S.; Neves, V.B.S.; Teles-Souza, J.; Jesus, H.N.R.; Bezerra, T.G.; Falcão, V.G.O.; Oliveira, R.C.; et al. The evolution of ADAM gene family in eukaryotes. Genomics 2020, 112. [Google Scholar] [CrossRef]
- Edwards, D.R.; Handsley, M.M.; Pennington, C.J. The ADAM metalloproteinases. Mol. Asp. Med. 2009, 29, 258–289. [Google Scholar] [CrossRef] [PubMed]
- Takeda, S. ADAM and ADAMTS family proteins and snake venom metalloproteinases: A structural overview. Toxins 2016, 8, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giebeler, N.; Zigrino, P. A disintegrin and metalloprotease (ADAM): Historical overview of their functions. Toxins 2016, 8, 122. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Chanalaris, A.; Troeberg, L. ADAMTS and ADAM metalloproteinases in osteoarthritis—Looking beyond the ‘usual suspects’. Osteoarthr. Cartil. 2017, 25, 1000–1009. [Google Scholar] [CrossRef] [Green Version]
- Maretzky, T.; Reiss, K.; Ludwig, A.; Buchholz, J.; Scholz, F.; Proksch, E.; De Strooper, B.; Hartmann, D.; Saftig, P. ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and β-catenin translocation. Proc. Natl. Acad. Sci. USA 2005, 102, 9182–9187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isozaki, T.; Ishii, S.; Nishimi, S.; Nishimi, A.; Oguro, N.; Seki, S.; Miura, Y.; Miwa, Y.; Oh, K.; Toyoshima, Y.; et al. A disintegrin and metalloprotease-10 is correlated with disease activity and mediates monocyte migration and adhesion in rheumatoid arthritis. Transl. Res. 2015, 166, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Porter, S.; Clark, I.M.; Kevorkian, L.; Edwards, D.R. The ADAMTS metalloproteinases. Biochem. J. 2005, 386, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Song, R.H.; Tortorella, M.D.; Malfait, A.M.; Alston, J.T.; Yang, Z.; Arner, E.C.; Griggs, D.W. Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis Rheum. 2007, 56, 575–585. [Google Scholar] [CrossRef]
- Struglics, A.; Lohmander, L.S.; Last, K.; Akikusa, J.; Allen, R.; Fosang, A.J. Aggrecanase cleavage in juvenile idiopathic arthritis patients is minimally detected in the aggrecan interglobular domain but robust at the aggrecan C-terminus. Arthritis Rheum. 2012, 64, 4151–4161. [Google Scholar] [CrossRef]
- Huang, K.; Wu, L.D. Aggrecanase and Aggrecan degradation in osteoarthritis: A review. J. Int. Med. Res. 2008, 36, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Chockalingam, P.S.; Sun, W.; Rivera-Bermudez, M.A.; Zeng, W.; Dufield, D.R.; Larsson, S.; Lohmander, L.S.; Flannery, C.R.; Glasson, S.S.; Georgiadis, K.E.; et al. Elevated aggrecanase activity in a rat model of joint injury is attenuated by an aggrecanase specific inhibitor. Osteoarthr. Cartil. 2011, 19, 315–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortorella, M.D.; Malfait, A.M.; Deccico, C.; Arner, E. The role of ADAM-TS4 (aggrecanase-1) and ADAM-TS5 (aggrecanase-2) in a model of cartilage degradation. Osteoarthr. Cartil. 2001, 9, 539–552. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.; Dalal, K. ADAMTS-4 and ADAMTS-5: Key enzymes in osteoarthritis. J. Cell. Biochem. 2011, 112, 3507–3514. [Google Scholar] [CrossRef] [PubMed]
- Bondeson, J.; Wainwright, S.; Hughes, C.; Caterson, B. The regulation of the ADAMTS4 and ADAMTS5 aggrecanases in osteoarthritis: A review. Clin. Exp. Rheumatol. 2008, 26, 139–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, E.A.; Liu, C.J. The role of ADAMTSs in arthritis. Protein Cell 2010. [Google Scholar] [CrossRef] [Green Version]
- Echtermeyer, F.; Bertrand, J.; Dreier, R.; Meinecke, I.; Neugebauer, K.; Fuerst, M.; Lee, Y.J.; Song, Y.W.; Herzog, C.; Theilmeier, G.; et al. Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat. Med. 2009, 15, 1072–1076. [Google Scholar] [CrossRef]
- Mohammed, F.F. Metalloproteinases, inflammation, and rheumatoid arthritis. Ann. Rheum. Dis. 2003, 62, 43–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winsz-Szczotka, K.; Komosińska-Vassev, K.; Kuźnik-Trocha, K.; Siwiec, A.; Zegleń, B.; Olczyk, K. Circulating keratan sulfate as a marker of metabolic changes of cartilage proteoglycan in juvenile idiopathic arthritis; Influence of growth factors as well as proteolytic and prooxidative agents on aggrecan alterations. Clin. Chem. Lab. Med. 2015, 53, 291–297. [Google Scholar] [CrossRef]
- Roberts, S.; Evans, H.; Wright, K.; van Niekerk, L.; Caterson, B.; Richardson, J.B.; Kumar, K.H.S.; Kuiper, J.H. ADAMTS-4 activity in synovial fluid as a biomarker of inflammation and effusion. Osteoarthr. Cartil. 2015, 23, 1622–1626. [Google Scholar] [CrossRef] [Green Version]
- Mittler, R. ROS Are Good. Trends Plant. Sci. 2017, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sena, L.A.; Chandel, N.S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 2012, 48, 158–167. [Google Scholar] [CrossRef] [Green Version]
- Quinonez-Flores, C.M.; Gonzalez-Chavez, S.A.; Del Rio Najera, D.; Pacheco-Tena, C. Oxidative Stress Relevance in the Pathogenesis of the Rheumatoid Arthritis: A Systematic Review. BioMed Res. Int. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Phull, A.R.; Nasir, B.; ul Haq, I.; Kim, S.J. Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chem. Biol. Interact. 2018, 281, 121–136. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Yang, M.; Lan, M.; Liu, C.; Zhang, Y.; Huang, B.; Liu, H.; Zhou, Y. ROS: Crucial Intermediators in the Pathogenesis of Intervertebral Disc Degeneration. Oxidative Med. Cell. Longev. 2017, 2017. [Google Scholar] [CrossRef]
- Gupta, R.K.; Patel, A.K.; Shah, N.; Chaudhary, A.K.; Jha, U.K.; Yadav, U.C.; Gupta, P.K.; Pakuwal, U. Oxidative stress and antioxidants in disease and cancer: A review. Asian Pac. J. Cancer Prev. 2014, 15, 4405–4409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarangarajan, R.; Meera, S.; Rukkumani, R.; Sankar, P.; Anuradha, G. Antioxidants: Friend or foe? Asian Pac. J. Trop. Med. 2017, 10. [Google Scholar] [CrossRef] [PubMed]
- Vasanthi, P.; Nalini, G.; Rajasekhar, G. Status of oxidative stress in rheumatoid arthritis. Int. J. Rheum. Dis. 2009, 12. [Google Scholar] [CrossRef]
- Veselinovic, M.; Barudzic, N.; Vuletic, M.; Zivkovic, V.; Tomic-Lucic, A.; Djuric, D.; Jakovljevic, V. Oxidative stress in rheumatoid arthritis patients: Relationship to diseases activity. Mol. Cell. Biochem. 2014, 391, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Hitchon, C.A.; El-Gabalawy, H.S. Oxidation in rheumatoid arthritis. Arthritis Res. Ther. 2004, 6, 265–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henrotin, Y.; Kurz, B.; Aigner, T. Oxygen and reactive oxygen species in cartilage degradation: Friends or foes? Osteoarthr. Cartil. 2005, 13, 643–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yudoh, K.; van Nguyen, T.; Nakamura, H.; Hongo-Masuko, K.; Kato, T.; Nishioka, K. Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: Oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function. Arthritis Res. Ther. 2005, 7. [Google Scholar] [CrossRef] [Green Version]
- Guney, T.; Yildiz, B.; Altikat, S.; Kural, N.; Alatas, O. Decreased antioxidant capacity and increased oxidative stress in patients with juvenile idiopathic arthritis. J. Pediatr. Sci. 2009, 1. [Google Scholar] [CrossRef]
- Ramos, V.A.; Ramos, P.A.; Dominguez, M.C. The role of oxidative stress in inflammation in patients with juvenile rheumatoid arthritis. J. De Pediatr. 2000, 76, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Pruunsild, C.; Heilman, K.; Zilmer, K.; Uibo, K.; Liivamägi, H.; Talvik, T.; Zilmer, M.; Tillmann, V. Plasma level of myeloperoxidase in children with juvenile idiopathic arthritis (a pilot study). Cent. Eur. J. Med. 2010, 5, 36–40. [Google Scholar] [CrossRef]
- Stamp, L.K.; Khalilova, I.; Tarr, J.M.; Senthilmohan, R.; Turner, R.; Haigh, R.C.; Winyard, P.G.; Kettle, A.J. Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatology 2012, 51, 1796–1803. [Google Scholar] [CrossRef] [Green Version]
- Goţia, S.; Popovici, I.; Hermeziu, B. Antioxidant enzymes levels in children with juvenile rheumatoid arthritis. Revista Medico-Chirurgicala a Societatii de Medici si Naturalisti din Iasi 2001, 105, 499–503. [Google Scholar]
- Altinel Acoglu, E.; Erel, O.; Yazilitas, F.; Bulbul, M.; Oguz, M.M.; Yucel, H.; Karacan, C.D.; Senel, S. Changes in thiol/disulfide homeostasis in juvenile idiopathic arthritis. Pediatr. Int. 2018, 60, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Adams, L.; Franco, M.C.; Estevez, A.G. Reactive nitrogen species in cellular signaling. Exp. Biol. Med. 2015, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. Rsc Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef] [Green Version]
- Stevens, A.L.; Wheeler, C.A.; Tannenbaum, S.R.; Grodzinsky, A.J. Nitric oxide enhances aggrecan degradation by aggrecanase in response to TNF-α but not IL-1β treatment at a post-transcriptional level in bovine cartilage explants. Osteoarthr. Cartil. 2008, 16, 489–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khojah, H.M.; Ahmed, S.; Abdel-Rahman, M.S.; Hamza, A.B. Reactive oxygen and nitrogen species in patients with rheumatoid arthritis as potential biomarkers for disease activity and the role of antioxidants. Free Radic. Biol. Med. 2016, 97, 285–291. [Google Scholar] [CrossRef]
- Lipińska, J.; Lipińska, S.; Stańczyk, J.; Sarniak, A.; Przymińska vel Prymont, A.; Kasielski, M.; Smolewska, E. Reactive oxygen species and serum antioxidant defense in juvenile idiopathic arthritis. Clin. Rheumatol. 2015, 34, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Lotito, A.P.N.; Muscará, M.N.; Kiss, M.H.B.; Teixeira, S.A.; Novaes, G.S.; Laurindo, I.M.M.; Silva, C.A.A.; Mello, S.B.V. Nitric Oxide-Derived Species in Synovial Fluid from Patients with Juvenile Idiopathic Arthritis. J. Rheumatol. 2004, 31, 992–997. [Google Scholar]
- Bica, B.E.R.G.; Gomes, N.M.; Fernandes, P.D.; Luiz, R.R.; Koatz, V.L.G. Nitric oxide levels and the severity of juvenile idiopathic arthritis. Rheumatol. Int. 2007, 27, 819–825. [Google Scholar] [CrossRef]
- Mäki-Petäjä, K.M.; Cheriyan, J.; Booth, A.D.; Hall, F.C.; Brown, J.; Wallace, S.M.L.; Ashby, M.J.; McEniery, C.M.; Wilkinson, I.B. Inducible nitric oxide synthase activity is increased in patients with rheumatoid arthritis and contributes to endothelial dysfunction. Int. J. Cardiol. 2008, 129, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Fortier, L.A.; Barker, J.U.; Strauss, E.J.; McCarrel, T.M.; Cole, B.J. The role of growth factors in cartilage repair. Clin. Orthop. Relat. Res. 2011, 469, 2706–2715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groblewska, M.; Mroczko, B.; Czygier, M.; Szmitkowski, M. Cytokiny jako markery osteolizy w diagnostyce pacjentów z przerzutami nowotworowymi do kosci. Postepy Hig. Med. Dosw. 2008, 62, 668–675. [Google Scholar]
- Shen, J.; Li, S.; Chen, D. TGF-β signaling and the development of osteoarthritis. Bone Res. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Scanzello, C.R.; Goldring, S.R. The role of synovitis in osteoarthritis pathogenesis. Bone 2012, 51, 249–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Zhao, D.L.; Liu, Z.X.; Sun, X.H.; Li, Y. Correlation of nuclear factor-κB, regulatory T cell and transforming growth factor β with rheumatoid arthritis. Saudi J. Biol. Sci. 2017, 24, 1849–1852. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.N.; Green, J.; Wang, Z.; Deng, Y.; Qiao, M.; Peabody, M.; Zhang, Q.; Ye, J.; Yan, Z.; Denduluri, S.; et al. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis. 2014, 1, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, M.T. Impact of cytokines and T lymphocytes upon osteoclast differentiation and function. Arthritis Res. Ther. 2007, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brescia, A.C.; Simonds, M.M.; McCahan, S.M.; Fawcett, P.T.; Rose, C.D. The role of transforming growth factor β signaling in fibroblast-like synoviocytes from patients with oligoarticular juvenile idiopathic arthritis: Dysregulation of transforming growth factor β signaling, including overexpression of bone morphogenetic pro. Arthritis Rheumatol. 2014, 66, 1352–1362. [Google Scholar] [CrossRef] [Green Version]
- Andrae, J.; Gallini, R.; Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008, 22, 1276–1312. [Google Scholar] [CrossRef] [Green Version]
- Rosengren, S.; Corr, M.; Boyle, D.L. Platelet-derived growth factor and transforming growth factor beta synergistically potentiate inflammatory mediator synthesis by fibroblast-like synoviocytes. Arthritis Res. Ther. 2010, 12. [Google Scholar] [CrossRef] [Green Version]
- Sundaresan, M.; Yu, Z.X.; Ferrans, V.J.; Irani, K.; Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 1995. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.B.; Chen, E.H.; Lynch, S.E. A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthr. Cartil. 2006, 14, 403–412. [Google Scholar] [CrossRef] [Green Version]
- Lundell, A.C.; Erlandsson, M.; Bokarewa, M.; Liivamägi, H.; Uibo, K.; Tarraste, S.; Rebane, T.; Talvik, T.; Pruunsild, C.; Pullerits, R. Low Serum IGF-1 in Boys with Recent Onset of Juvenile Idiopathic Arthritis. J. Immunol. Res. 2018, 2018. [Google Scholar] [CrossRef]
- Wong, S.C.; Dobie, R.; Altowati, M.A.; Werther, G.A.; Farquharson, C.; Ahmed, S.F. Growth and the growth hormone-insulin like growth factor 1 axis in children with chronic inflammation: Current Evidence, Gaps in Knowledge, and Future Directions. Endocr. Rev. 2016, 37, 62–110. [Google Scholar] [CrossRef]
- Guszczyn, T.; Rzeczycka, J.; Popko, J. IGF-I and IGF-binding proteins in articular exudates of children with post-traumatic knee damage and juvenile idiopathic arthritis. Pathobiology 2009, 76, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Winsz-Szczotka, K.; Kuźnik-Trocha, K.; Gruenpeter, A.; Wojdas, M.; Dąbkowska, K.; Olczyk, K. Association of circulating COMP and YKL-40 as markers of metabolic changes of cartilage with adipocytokines in juvenile idiopathic arthritis. Metabolites 2020, 10, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winsz-Szczotka, K.; Kuźnik-Trocha, K.; Komosińska-Vassev, K.; Wisowski, G.; Gruenpeter, A.; Lachór-Motyka, I.; Zegleń, B.; Lemski, W.; Olczyk, K. Plasma and urinary glycosaminoglycans in the course of juvenile idiopathic arthritis. Biochem. Biophys. Res. Commun. 2015, 458. [Google Scholar] [CrossRef] [PubMed]
Subtype of MMPs | MMP No. | Main Substrates |
---|---|---|
collagenases | MMP-1 | collagen type I, II, III, V, VII, VIII i X, MMP-2, -9, proteoglycans, fibronectin, laminin. |
MMP-8 | collagen type I, II, III, V, VII, VIII, X proteoglycans, fibronectin, ADAMTS-1, proMMP-8. | |
MMP-13 | collagen type I, II, III, IV, V, IX, X i XI, laminin, proMMP-9, -13. | |
gelatinases | MMP-2 | collagen type I, II, III IV, V, VII, X, elastin, fibronectin, laminin, aggrecan, proMMP-9, -13, IL-1β, TGF-β. |
MMP-9 | collagen type IV, V, VII, X, XIV, aggrecan, elastin, fibronectin, laminin, IL-1β, TGF-β, plasminogen. | |
stromelysins | MMP-3 | collagen type III, IV, V, IX, X, XI, elastin, laminin, fibronectin, aggrecan, proMMP-1, -7, -8, -9, -13. |
MMP-10 | collagen type I, III, IV, V, elastin, laminin, aggrecan, fibronectin, MMP-1, -8. | |
MMP-11 | collagen type IV, fibronectin, laminin, aggrecan. | |
matrilysins | MMP-7 | collagen type IV, X, laminin, elastin, fibronectin, proteoglycans, proMMPs, E-cadherin. |
MMP-26 | collagen type I, IV, laminin, elastin, fibronectin, proteoglycans, proMMPs, E-cadherin. | |
membrane type MMP | MMP-14 | collagen type I, II, III, fibronectin, vitronectin, aggrecan, perlecan, laminin, proMMP-2, -13. |
MMP-15 | collagen type I, II, III aggrecan, perlecan, laminin, fibronectin, proMMP-2. | |
MMP-16 | collagen type III, proMMP-2. | |
MMP-17 | proMMP-2, fibronectin, fibrin, | |
MMP-24 | proMMP-2, -13. | |
MMP-25 | proMMP-2. | |
other MMPs | MMP-12 | collagen type IV, elastin, fibronectin, vitronectin, laminin. |
MMP-18 | collagen type I, II, III. | |
MMP-19 | collagen type IV. | |
MMP-21 | collagen type IV. | |
MMP-27 | collagen type IV. | |
Subtypes of ADAMTS | ADAMTS No. | Main Substrates |
aggrecanases/proteoglycanases | ADAMTS1 | aggrecan, versican, syndecan. |
ADAMTS 4 | aggrecan, versican, biglycan, brevican. | |
ADAMTS 5, | aggrecan, versican, biglycan, brevican. | |
ADAMTS 8, | aggrecan. | |
ADAMTS 9, | aggrecan, versican. | |
ADAMTS 15, | aggrecan, versican. | |
ADAMTS 20 | versican. | |
procollagen N-propeptidases | ADAMTS2, | fibrillar procollagens types I-III and V. |
ADAMTS3, | fibrillar procollagen type II, biglycan. | |
ADAMTS14 | fibrillar procollagen type I. | |
cartilage oligomeric matrix protein-cleaving enzymes | ADAMTS7,12 | cartilage oligomeric matrix protein. |
von Willebrand Factor proteinase | ADAMTS13 | von Willebrand Factor. |
orphan enzymes | ADAMTS6,10,16,17,18,19 | unknown. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojdas, M.; Dąbkowska, K.; Winsz-Szczotka, K. Alterations of Extracellular Matrix Components in the Course of Juvenile Idiopathic Arthritis. Metabolites 2021, 11, 132. https://doi.org/10.3390/metabo11030132
Wojdas M, Dąbkowska K, Winsz-Szczotka K. Alterations of Extracellular Matrix Components in the Course of Juvenile Idiopathic Arthritis. Metabolites. 2021; 11(3):132. https://doi.org/10.3390/metabo11030132
Chicago/Turabian StyleWojdas, Magdalena, Klaudia Dąbkowska, and Katarzyna Winsz-Szczotka. 2021. "Alterations of Extracellular Matrix Components in the Course of Juvenile Idiopathic Arthritis" Metabolites 11, no. 3: 132. https://doi.org/10.3390/metabo11030132