Advances and Perspectives in Prostate Cancer Biomarker Discovery in the Last 5 Years through Tissue and Urine Metabolomics
Abstract
:1. Introduction
2. Metabolomic Approaches to Biomarker Discovery
3. The Metabolic Phenotype of Prostate Cancer
4. Tissue Metabolomic Studies
5. Urine Metabolomic Studies
6. Current Challenges and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filella, X.; Foj, L. Novel Biomarkers for Prostate Cancer Detection and Prognosis. Adv. Exp. Med. Biol 2018, 1095, 15–39. [Google Scholar] [CrossRef]
- Rigau, M.; Olivan, M.; Garcia, M.; Sequeiros, T.; Montes, M.; Colas, E.; Llaurado, M.; Planas, J.; Torres, I.; Morote, J.; et al. The present and future of prostate cancer urine biomarkers. Int. J. Mol. Sci. 2013, 14, 12620–12649. [Google Scholar] [CrossRef] [Green Version]
- Wolf, A.M.; Wender, R.C.; Etzioni, R.B.; Thompson, I.M.; D’Amico, A.V.; Volk, R.J.; Brooks, D.D.; Dash, C.; Guessous, I.; Andrews, K.; et al. American Cancer Society guideline for the early detection of prostate cancer: Update 2010. CA Cancer J. Clin. 2010, 60, 70–98. [Google Scholar] [CrossRef] [Green Version]
- Hubner, N.; Shariat, S.; Remzi, M. Prostate biopsy: Guidelines and evidence. Curr. Opin. Urol. 2018, 28, 354–359. [Google Scholar] [CrossRef]
- Eskra, J.N.; Rabizadeh, D.; Pavlovich, C.P.; Catalona, W.J.; Luo, J. Approaches to urinary detection of prostate cancer. Prostate Cancer Prostatic Dis. 2019, 22, 362–381. [Google Scholar] [CrossRef] [PubMed]
- Louie, K.S.; Seigneurin, A.; Cathcart, P.; Sasieni, P. Do prostate cancer risk models improve the predictive accuracy of PSA screening? A meta-analysis. Ann. Oncol. 2015, 26, 848–864. [Google Scholar] [CrossRef] [PubMed]
- Kearns, J.T.; Lin, D.W. Improving the Specificity of PSA Screening with Serum and Urine Markers. Curr. Urol. Rep. 2018, 19, 80. [Google Scholar] [CrossRef]
- Das, C.J.; Razik, A.; Sharma, S.; Verma, S. Prostate biopsy: When and how to perform. Clin. Radiol. 2019, 74, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Tourinho-Barbosa, R.; Srougi, V.; Nunes-Silva, I.; Baghdadi, M.; Rembeyo, G.; Eiffel, S.S.; Barret, E.; Rozet, F.; Galiano, M.; Cathelineau, X.; et al. Biochemical recurrence after radical prostatectomy: What does it mean? Int. Braz. J. Urol. 2018, 44, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Fakhrejahani, F.; Madan, R.A.; Dahut, W.L. Management Options for Biochemically Recurrent Prostate Cancer. Curr. Treat Options Oncol. 2017, 18, 26. [Google Scholar] [CrossRef]
- Teo, M.Y.; Rathkopf, D.E.; Kantoff, P. Treatment of Advanced Prostate Cancer. Ann. Rev. Med. 2019, 70, 479–499. [Google Scholar] [CrossRef] [PubMed]
- Narayan, V.M.; Konety, B.R.; Warlick, C. Novel biomarkers for prostate cancer: An evidence-based review for use in clinical practice. Int. J. Urol. 2017, 24, 352–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.; Lee, S.W.; Song, G.; Kang, T.W.; Jung, J.H.; Chung, H.C.; Kim, S.J.; Park, C.-H.; Park, J.Y.; Shin, T.Y.; et al. Diagnostic Performance of %[-2]proPSA and Prostate Health Index for Prostate Cancer: Prospective, Multi-institutional Study. J. Korean Med. Sci. 2018, 33, e94. [Google Scholar] [CrossRef] [PubMed]
- Sartori, D.A.; Chan, D.W. Biomarkers in prostate cancer: What’s new? Curr. Opin. Oncol. 2014, 26, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Chistiakov, D.A.; Myasoedova, V.A.; Grechko, A.V.; Melnichenko, A.A.; Orekhov, A.N. New biomarkers for diagnosis and prognosis of localized prostate cancer. Semin. Cancer Biol. 2018, 52, 9–16. [Google Scholar] [CrossRef]
- Murphy, L.; Prencipe, M.; Gallagher, W.M.; Watson, R.W. Commercialized biomarkers: New horizons in prostate cancer diagnostics. Expert Rev. Mol. Diagn. 2015, 15, 491–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, A.R.; Bastos Mde, L.; Carvalho, M.; Guedes de Pinho, P. Biomarker Discovery in Human Prostate Cancer: An Update in Metabolomics Studies. Transl. Oncol. 2016, 9, 357–370. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, J.K.; Lindon, J.C.; Holmes, E. ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999, 29, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Bujak, R.; Struck-Lewicka, W.; Markuszewski, M.J.; Kaliszan, R. Metabolomics for laboratory diagnostics. J. Pharm. Biomed. Anal. 2015, 113, 108–120. [Google Scholar] [CrossRef]
- Armitage, E.G.; Barbas, C. Metabolomics in cancer biomarker discovery: Current trends and future perspectives. J. Pharm. Biomed. Anal. 2014, 87, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Marchand, C.R.; Farshidfar, F.; Rattner, J.; Bathe, O.F. A Framework for Development of Useful Metabolomic Biomarkers and Their Effective Knowledge Translation. Metabolites 2018, 8, 59. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Lopez, A.; Lopez-Gonzalvez, A.; Barker-Tejeda, T.C.; Barbas, C. A review of validated biomarkers obtained through metabolomics. Expert Rev. Mol. Diagn. 2018, 18, 557–575. [Google Scholar] [CrossRef]
- Nagrath, D.; Caneba, C.; Karedath, T.; Bellance, N. Metabolomics for mitochondrial and cancer studies. Biochim. Biophys. Acta 2011, 1807, 650–663. [Google Scholar] [CrossRef] [Green Version]
- Nagana Gowda, G.A.; Raftery, D. Biomarker Discovery and Translation in Metabolomics. Curr. Metab. 2013, 1, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.-L.; Zhang, A.-H.; Kong, L.; Wang, X.-J. Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Adv. 2018, 8, 22335–22350. [Google Scholar] [CrossRef] [Green Version]
- Marshall, D.D.; Powers, R. Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics. Prog. Nucl. Magn. Reason. Spectrosc. 2017, 100, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segers, K.; Declerck, S.; Mangelings, D.; Heyden, Y.V.; Eeckhaut, A.V. Analytical techniques for metabolomic studies: A review. Bioanalysis 2019, 11, 2297–2318. [Google Scholar] [CrossRef]
- Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass. Spectrom. Rev. 2007, 26, 51–78. [Google Scholar] [CrossRef]
- Han, J.; Datla, R.; Chan, S.; Borchers, C.H. Mass spectrometry-based technologies for high-throughput metabolomics. Bioanalysis 2009, 1, 1665–1684. [Google Scholar] [CrossRef] [PubMed]
- Crook, A.A.; Powers, R. Quantitative NMR-Based Biomedical Metabolomics: Current Status and Applications. Molecules 2020, 25, 5128. [Google Scholar] [CrossRef]
- Lindon, J.C.; Nicholson, J.K. Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Ann. Rev. Anal. Chem. 2008, 1, 45–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, J.F.; Zhou, B.; Ressom, H.W. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trends Anal. Chem. 2012, 32, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, A.R.; Pinto, J.; Bastos, M.L.; Carvalho, M.; Guedes de Pinho, P. NMR-based metabolomics studies of human prostate cancer tissue. Metabolomics 2018, 14, 88. [Google Scholar] [CrossRef]
- Zou, W.; She, J.; Tolstikov, V.V. A comprehensive workflow of mass spectrometry-based untargeted metabolomics in cancer metabolic biomarker discovery using human plasma and urine. Metabolites 2013, 3, 787–819. [Google Scholar] [CrossRef]
- Fan, T.W.; Lane, A.N. Applications of NMR spectroscopy to systems biochemistry. Prog. Nucl. Magn. Reason. Spectrosc. 2016, 92, 18–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turi, K.N.; Romick-Rosendale, L.; Ryckman, K.K.; Hartert, T.V. A review of metabolomics approaches and their application in identifying causal pathways of childhood asthma. J. Allergy Clin. Immunol. 2018, 141, 1191–1201. [Google Scholar] [CrossRef] [Green Version]
- Armitage, E.G.; Ciborowski, M. Applications of Metabolomics in Cancer Studies. Adv. Exp. Med. Biol. 2017, 965, 209–234. [Google Scholar] [CrossRef] [PubMed]
- Janfaza, S.; Khorsand, B.; Nikkhah, M.; Zahiri, J. Digging deeper into volatile organic compounds associated with cancer. Biol. Methods Protoc. 2019, 4, bpz014. [Google Scholar] [CrossRef]
- Gao, Q.; Lee, W.Y. Urinary metabolites for urological cancer detection: A review on the application of volatile organic compounds for cancers. Am. J. Clin. Exp. Urol. 2019, 7, 232–248. [Google Scholar]
- Lubes, G.; Goodarzi, M. GC-MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers. J. Pharm. Biomed. Anal. 2018, 147, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Cornu, J.N.; Cancel-Tassin, G.; Ondet, V.; Girardet, C.; Cussenot, O. Olfactory detection of prostate cancer by dogs sniffing urine: A step forward in early diagnosis. Eur. Urol. 2011, 59, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Taverna, G.; Tidu, L.; Grizzi, F.; Torri, V.; Mandressi, A.; Sardella, P.; La Torre, G.; Cocciolone, G.; Seveso, M.; Giusti, G.; et al. Olfactory system of highly trained dogs detects prostate cancer in urine samples. J. Urol. 2015, 193, 1382–1387. [Google Scholar] [CrossRef]
- Pirrone, F.; Albertini, M. Olfactory detection of cancer by trained sniffer dogs: A systematic review of the literature. J. Vet. Behav. 2017, 19, 105–117. [Google Scholar] [CrossRef]
- Perrotti, F.; Rosa, C.; Cicalini, I.; Sacchetta, P.; Del Boccio, P.; Genovesi, D.; Pieragostino, D. Advances in Lipidomics for Cancer Biomarkers Discovery. Int. J. Mol. Sci. 2016, 17, 1992. [Google Scholar] [CrossRef] [Green Version]
- Park, J.K.; Coffey, N.J.; Limoges, A.; Le, A. The Heterogeneity of Lipid Metabolism in Cancer. Adv. Exp. Med. Biol. 2018, 1063, 33–55. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Han, X. Lipidomics: Techniques, Applications, and Outcomes Related to Biomedical Sciences. Trends Biochem. Sci. 2016, 41, 954–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumanov, S.; Kamphorst, J.J. Recent advances in expanding the coverage of the lipidome. Curr. Opin. Biotechnol. 2017, 43, 127–133. [Google Scholar] [CrossRef]
- Islam, S.R.; Manna, S.K. Lipidomic Analysis of Cancer Cell and Tumor Tissues. Methods Mol. Biol. 2019, 1928, 175–204. [Google Scholar] [CrossRef]
- Kwon, H.; Oh, S.; Jin, X.; An, Y.J.; Park, S. Cancer metabolomics in basic science perspective. Arch. Pharm. Res. 2015, 38, 372–380. [Google Scholar] [CrossRef]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef]
- Eidelman, E.; Twum-Ampofo, J.; Ansari, J.; Siddiqui, M.M. The Metabolic Phenotype of Prostate Cancer. Front. Oncol. 2017, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.K.; Giskeødegård, G.F.; Tessem, M.-B. Metabolic alterations in tissues and biofluids of patients with prostate cancer. Curr. Opin. Endocr. Metab. Res. 2020, 10, 23–28. [Google Scholar] [CrossRef]
- Zadra, G.; Loda, M. Metabolic Vulnerabilities of Prostate Cancer: Diagnostic and Therapeutic Opportunities. Cold Spring Harb. Perspect. Med. 2018, 8, a030569. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, S.M.; Arnold, J.; Sreekumar, A. Metabolomic profiling of hormone-dependent cancers: A bird’s eye view. Trends Endocr. Metab. 2015, 26, 477–485. [Google Scholar] [CrossRef] [Green Version]
- Schipper, R.G.; Romijn, J.C.; Cuijpers, V.M.; Verhofstad, A.A. Polyamines and prostatic cancer. Biochem. Soc. Trans. 2003, 31, 375–380. [Google Scholar] [CrossRef]
- Dai, C.; Heemers, H.; Sharifi, N. Androgen Signaling in Prostate Cancer. Cold Spring Harb. Perspect. Med. 2017, 7, a030452. [Google Scholar] [CrossRef] [Green Version]
- Sreekumar, A.; Poisson, L.M.; Rajendiran, T.M.; Khan, A.P.; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; Lonigro, R.J.; Li, Y.; et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009, 457, 910–914. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Liu, T.; Ma, C.; Xue, R.; Deng, C.; Zeng, H.; Shen, X. GC/MS-based metabolomic approach to validate the role of urinary sarcosine and target biomarkers for human prostate cancer by microwave-assisted derivatization. Anal. Bioanal. Chem. 2011, 401, 635–646. [Google Scholar] [CrossRef]
- Jentzmik, F.; Stephan, C.; Lein, M.; Miller, K.; Kamlage, B.; Bethan, B.; Kristiansen, G.; Jung, K. Sarcosine in prostate cancer tissue is not a differential metabolite for prostate cancer aggressiveness and biochemical progression. J. Urol. 2011, 185, 706–711. [Google Scholar] [CrossRef]
- Jentzmik, F.; Stephan, C.; Miller, K.; Schrader, M.; Erbersdobler, A.; Kristiansen, G.; Lein, M.; Jung, K. Sarcosine in urine after digital rectal examination fails as a marker in prostate cancer detection and identification of aggressive tumours; Discussion 20-1. Eur. Urol. 2010, 58, 12–18. [Google Scholar] [CrossRef]
- Green, T.; Chen, X.; Ryan, S.; Asch, A.S.; Ruiz-Echevarria, M.J. TMEFF2 and SARDH cooperate to modulate one-carbon metabolism and invasion of prostate cancer cells. Prostate 2013, 73, 1561–1575. [Google Scholar] [CrossRef] [Green Version]
- Donkena, K.V.; Yuan, H.; Young, C.Y. Vitamin Bs, one carbon metabolism and prostate cancer. Mini Rev. Med. Chem. 2010, 10, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Terada, N.; Inoue, T.; Kobayashi, T.; Nakayama, K.; Okada, Y.; Yoshikawa, T.; Miyazaki, Y.; Uegaki, M.; Utsunomiya, N.; et al. Decreased expression of lysophosphatidylcholine (16:0/OH) in high resolution imaging mass spectrometry independently predicts biochemical recurrence after surgical treatment for prostate cancer. Prostate 2015, 75, 1821–1830. [Google Scholar] [CrossRef] [Green Version]
- Huan, T.; Troyer, D.A.; Li, L. Metabolite Analysis and Histology on the Exact Same Tissue: Comprehensive Metabolomic Profiling and Metabolic Classification Prostate Cancer. Sci. Rep. 2016, 6, 32272. [Google Scholar] [CrossRef]
- Li, J.; Ren, S.; Piao, H.L.; Wang, F.; Yin, P.; Xu, C.; Lu, X.; Ye, G.; Shao, Y.; Yan, M.; et al. Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer. Sci. Rep. 2016, 6, 20984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, S.; Shao, Y.; Zhao, X.; Hong, C.S.; Wang, F.; Lu, X.; Li, J.; Ye, G.; Yan, M.; Zhuang, Z.; et al. Integration of Metabolomics and Transcriptomics Reveals Major Metabolic Pathways and Potential Biomarker Involved in Prostate Cancer. Mol. Cell. Proteom. 2016, 15, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Hansen, A.F.; Sandsmark, E.; Rye, M.B.; Wright, A.J.; Bertilsson, H.; Richardsen, E.; Viset, T.; Bofin, A.M.; Angelsen, A.; Selnaes, K.M.; et al. Presence of TMPRSS2-ERG is associated with alterations of the metabolic profile in human prostate cancer. Oncotarget 2016, 7, 42071–42085. [Google Scholar] [CrossRef] [Green Version]
- Madhu, B.; Shaw, G.L.; Warren, A.Y.; Neal, D.E.; Griffiths, J.R. Response of Degarelix treatment in human prostate cancer monitored by HR-MAS 1H NMR spectroscopy. Metabolomics 2016, 12, 120. [Google Scholar] [CrossRef] [Green Version]
- Braadland, P.R.; Giskeodegard, G.; Sandsmark, E.; Bertilsson, H.; Euceda, L.R.; Hansen, A.F.; Guldvik, I.J.; Selnaes, K.M.; Grytli, H.H.; Katz, B.; et al. Ex vivo metabolic fingerprinting identifies biomarkers predictive of prostate cancer recurrence following radical prostatectomy. Br. J. Cancer 2017, 117, 1656–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Y.; Ye, G.; Ren, S.; Piao, H.L.; Zhao, X.; Lu, X.; Wang, F.; Ma, W.; Li, J.; Yin, P.; et al. Metabolomics and transcriptomics profiles reveal the dysregulation of the tricarboxylic acid cycle and related mechanisms in prostate cancer. Int. J. Cancer 2018, 143, 396–407. [Google Scholar] [CrossRef] [PubMed]
- Vandergrift, L.A.; Decelle, E.A.; Kurth, J.; Wu, S.; Fuss, T.L.; DeFeo, E.M.; Halpern, E.F.; Taupitz, M.; McDougal, W.S.; Olumi, A.F.; et al. Metabolomic Prediction of Human Prostate Cancer Aggressiveness: Magnetic Resonance Spectroscopy of Histologically Benign Tissue. Sci. Rep. 2018, 8, 4997. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Mei, H.; Agee, J.; Brown, T.; Mao, J. Racial differences in distribution of fatty acids in prostate cancer and benign prostatic tissues. Lipids Health Dis. 2019, 18, 189. [Google Scholar] [CrossRef] [Green Version]
- Franko, A.; Shao, Y.; Heni, M.; Hennenlotter, J.; Hoene, M.; Hu, C.; Liu, X.; Zhao, X.; Wang, Q.; Birkenfeld, A.L.; et al. Human Prostate Cancer is Characterized by an Increase in Urea Cycle Metabolites. Cancers 2020, 12, 1814. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Dong, B.; Ning, J.; Shao, X.; Zhao, L.; Jiang, Q.; Ji, H.; Cai, A.; Xue, W.; Gao, H. NMR-based metabolomics analysis identifies discriminatory metabolic disturbances in tissue and biofluid samples for progressive prostate cancer. Clin. Chim. Acta 2020, 501, 241–251. [Google Scholar] [CrossRef]
- Dudka, I.; Thysell, E.; Lundquist, K.; Antti, H.; Iglesias-Gato, D.; Flores-Morales, A.; Bergh, A.; Wikstrom, P.; Grobner, G. Comprehensive metabolomics analysis of prostate cancer tissue in relation to tumor aggressiveness and TMPRSS2-ERG fusion status. BMC Cancer 2020, 20, 437. [Google Scholar] [CrossRef]
- Bertilsson, H.; Tessem, M.-B.; Flatberg, A.; Viset, T.; Gribbestad, I.; Angelsen, A.; Halgunset, J. Changes in Gene Transcription Underlying the Aberrant Citrate and Choline Metabolism in Human Prostate Cancer Samples. Clin. Cancer Res. 2012, 18, 3261–3269. [Google Scholar] [CrossRef] [Green Version]
- Pollard, P.J.; Briere, J.J.; Alam, N.A.; Barwell, J.; Barclay, E.; Wortham, N.C.; Hunt, T.; Mitchell, M.; Olpin, S.; Moat, S.J.; et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet. 2005, 14, 2231–2239. [Google Scholar] [CrossRef]
- Yang, M.; Soga, T.; Pollard, P.J. Oncometabolites: Linking altered metabolism with cancer. J. Clin. Investig. 2013, 123, 3652–3658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, A.; Selak, M.A.; Gottlieb, E. Succinate dehydrogenase and fumarate hydratase: Linking mitochondrial dysfunction and cancer. Oncogene 2006, 25, 4675–4682. [Google Scholar] [CrossRef] [Green Version]
- Ranasinghe, W.K.; Baldwin, G.S.; Bolton, D.; Shulkes, A.; Ischia, J.; Patel, O. HIF1alpha expression under normoxia in prostate cancer--which pathways to target? J. Urol. 2015, 193, 763–770. [Google Scholar] [CrossRef]
- Staal, J.; Beyaert, R. Inflammation and NF-kappaB Signaling in Prostate Cancer: Mechanisms and Clinical Implications. Cells 2018, 7, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, A.; Ceppi, P. A non-proliferative role of pyrimidine metabolism in cancer. Mol. Metab. 2020, 35, 100962. [Google Scholar] [CrossRef]
- Loffler, M.; Fairbanks, L.D.; Zameitat, E.; Marinaki, A.M.; Simmonds, H.A. Pyrimidine pathways in health and disease. Trends Mol. Med. 2005, 11, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Garavito, M.F.; Narvaez-Ortiz, H.Y.; Zimmermann, B.H. Pyrimidine Metabolism: Dynamic and Versatile Pathways in Pathogens and Cellular Development. J. Genet. Genom. 2015, 42, 195–205. [Google Scholar] [CrossRef]
- Konno, M.; Asai, A.; Kawamoto, K.; Nishida, N.; Satoh, T.; Doki, Y.; Mori, M.; Ishii, H. The one-carbon metabolism pathway highlights therapeutic targets for gastrointestinal cancer (Review). Int. J. Oncol. 2017, 50, 1057–1063. [Google Scholar] [CrossRef] [Green Version]
- Vasan, K.; Werner, M.; Chandel, N.S. Mitochondrial Metabolism as a Target for Cancer Therapy. Cell Metab. 2020, 32, 341–352. [Google Scholar] [CrossRef]
- Zhou, X.; Lawrence, T.J.; He, Z.; Pound, C.R.; Mao, J.; Bigler, S.A. The expression level of lysophosphatidylcholine acyltransferase 1 (LPCAT1) correlates to the progression of prostate cancer. Exp. Mol. Pathol. 2012, 92, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Cebrian, N.; Rojas-Benedicto, A.; Albors-Vaquer, A.; Lopez-Guerrero, J.A.; Pineda-Lucena, A.; Puchades-Carrasco, L. Metabolomics Contributions to the Discovery of Prostate Cancer Biomarkers. Metabolites 2019, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, K.; Podmore, I. Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer. J. Biomark. 2015, 2015, 981458. [Google Scholar] [CrossRef] [Green Version]
- Walsh, M.C.; Brennan, L.; Malthouse, J.P.; Roche, H.M.; Gibney, M.J. Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am. J. Clin. Nutr. 2006, 84, 531–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Struck-Lewicka, W.; Kordalewska, M.; Bujak, R.; Yumba Mpanga, A.; Markuszewski, M.; Jacyna, J.; Matuszewski, M.; Kaliszan, R.; Markuszewski, M.J. Urine metabolic fingerprinting using LC-MS and GC-MS reveals metabolite changes in prostate cancer: A pilot study. J. Pharm. Biomed. Anal. 2015, 111, 351–361. [Google Scholar] [CrossRef]
- Khalid, T.; Aggio, R.; White, P.; De Lacy Costello, B.; Persad, R.; Al-Kateb, H.; Jones, P.; Probert, C.S.; Ratcliffe, N. Urinary Volatile Organic Compounds for the Detection of Prostate Cancer. PLoS ONE 2015, 10, e0143283. [Google Scholar] [CrossRef]
- Tsoi, T.H.; Chan, C.F.; Chan, W.L.; Chiu, K.F.; Wong, W.T.; Ng, C.F.; Wong, K.L. Urinary Polyamines: A Pilot Study on Their Roles as Prostate Cancer Detection Biomarkers. PLoS ONE 2016, 11, e0162217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Peralbo, M.A.; Gomez-Gomez, E.; Calderon-Santiago, M.; Carrasco-Valiente, J.; Ruiz-Garcia, J.; Requena-Tapia, M.J.; Luque de Castro, M.D.; Priego-Capote, F. Prostate Cancer Patients-Negative Biopsy Controls Discrimination by Untargeted Metabolomics Analysis of Urine by LC-QTOF: Upstream Information on Other Omics. Sci. Rep. 2016, 6, 38243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derezinski, P.; Klupczynska, A.; Sawicki, W.; Palka, J.A.; Kokot, Z.J. Amino Acid Profiles of Serum and Urine in Search for Prostate Cancer Biomarkers: A Pilot Study. Int. J. Med. Sci. 2017, 14, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Rambla, C.; Puchades-Carrasco, L.; Garcia-Flores, M.; Rubio-Briones, J.; Lopez-Guerrero, J.A.; Pineda-Lucena, A. Non-invasive urinary metabolomic profiling discriminates prostate cancer from benign prostatic hyperplasia. Metabolomics 2017, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Pacheco, A.; Salinero-Bachiller, M.; Iribar, M.C.; Lopez-Luque, A.; Mijan-Ortiz, J.L.; Peinado, J.M. Furan and p-xylene as candidate biomarkers for prostate cancer. Urol. Oncol. 2018, 36, 243.e21–243.e27. [Google Scholar] [CrossRef]
- Lima, A.R.; Pinto, J.; Azevedo, A.I.; Barros-Silva, D.; Jeronimo, C.; Henrique, R.; de Lourdes Bastos, M.; Guedes de Pinho, P.; Carvalho, M. Identification of a biomarker panel for improvement of prostate cancer diagnosis by volatile metabolic profiling of urine. Br. J. Cancer 2019, 121, 857–868. [Google Scholar] [CrossRef]
- Arlette, Y.-M.; Wiktoria, S.-L.; Renata, W.; Marcin, M.; Marek, R.; Roman, K.; Michał Jan, M. Metabolomic Heterogeneity of Urogenital Tract Cancers Analyzed by Complementary Chromatographic Techniques Coupled with Mass Spectrometry. Curr. Med. Chem. 2019, 26, 216–231. [Google Scholar] [CrossRef]
- Amante, E.; Salomone, A.; Alladio, E.; Vincenti, M.; Porpiglia, F.; Bro, R. Untargeted Metabolomic Profile for the Detection of Prostate Carcinoma-Preliminary Results from PARAFAC2 and PLS-DA Models. Molecules 2019, 24, 3063. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.R.; Pinto, J.; Barros-Silva, D.; Jeronimo, C.; Henrique, R.; Bastos, M.L.; Carvalho, M.; Guedes Pinho, P. New findings on urinary prostate cancer metabolome through combined GC-MS and (1)H NMR analytical platforms. Metabolomics 2020, 16, 70. [Google Scholar] [CrossRef]
- Lima, A.R.; Pinto, J.; Carvalho-Maia, C.; Jeronimo, C.; Henrique, R.; Bastos, M.L.; Carvalho, M.; Guedes de Pinho, P. A Panel of Urinary Volatile Biomarkers for Differential Diagnosis of Prostate Cancer from Other Urological Cancers. Cancers 2020, 12, 2017. [Google Scholar] [CrossRef]
- Swanson, M.G.; Vigneron, D.B.; Tabatabai, Z.L.; Males, R.G.; Schmitt, L.; Carroll, P.R.; James, J.K.; Hurd, R.E.; Kurhanewicz, J. Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues. Magn. Reason. Med. 2003, 50, 944–954. [Google Scholar] [CrossRef] [PubMed]
- Swanson, M.G.; Keshari, K.R.; Tabatabai, Z.L.; Simko, J.P.; Shinohara, K.; Carroll, P.R.; Zektzer, A.S.; Kurhanewicz, J. Quantification of choline- and ethanolamine-containing metabolites in human prostate tissues using 1H HR-MAS total correlation spectroscopy. Magn. Reason. Med. 2008, 60, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, P.; Somashekar, B.S.; Ponnusamy, M.; Gursky, A.; Dailey, S.; Kunju, P.; Lee, C.T.; Chinnaiyan, A.M.; Rajendiran, T.M.; Ramamoorthy, A. HR-MAS NMR tissue metabolomic signatures cross-validated by mass spectrometry distinguish bladder cancer from benign disease. J. Proteome Res. 2013, 12, 3519–3528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emwas, A.H.; Luchinat, C.; Turano, P.; Tenori, L.; Roy, R.; Salek, R.M.; Ryan, D.; Merzaban, J.S.; Kaddurah-Daouk, R.; Zeri, A.C.; et al. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: A review. Metabolomics 2015, 11, 872–894. [Google Scholar] [CrossRef] [Green Version]
- Spicer, R.A.; Salek, R.; Steinbeck, C. A decade after the metabolomics standards initiative it’s time for a revision. Sci. Data 2017, 4, 170138. [Google Scholar] [CrossRef]
- Lee, D.K.; Na, E.; Park, S.; Park, J.H.; Lim, J.; Kwon, S.W. In Vitro Tracking of Intracellular Metabolism-Derived Cancer Volatiles via Isotope Labeling. ACS Cent. Sci. 2018, 4, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
Analytical Platform | Advantages | Limitations |
---|---|---|
GC–MS | ||
LC–MS | ||
NMR |
PCa Group | Control Group | Analytical Platform | Statistical Methods | Altered Metabolites (Direction of Variation) | Dysregulated Metabolic Pathways | Candidate Biomarkers | Ref. |
---|---|---|---|---|---|---|---|
n = 31 | n = 14 (benign adjacent tissue) | HR-MALDI-IMS MS/MS | Univariate and Multivariate Cox Regression Analyses | 1. LPC (16:0) (−) 2. SM [(d18:1/16:0)] (−) Predictor of biochemical recurrence: 1. LPC (16:0) (−) | 1. FAs de novo synthesis and remodeling pathway (Lands′ pathway) 2. Arachidonic acid metabolism | LPC (16:0) | [64] |
n = 25 Validation set 1: n = 19 Validation set 2: n = 12 | n = 25 (normal adjacent tissue) Validation set 1: n = 17 (normal adjacent tissue) Validation set 2: n = 12 (normal adjacent tissue) | LC–MS | PCA OPLS-DA Model performance: Sens: 85% Spec: 83–91% AUC: 0.90 | 1. Adenosine monophosphate (−) 2. Spermidine (+) 3. Uracil (+) | 1. Purine metabolism 2. Polyamines synthesis 3. Pyrimidine metabolism | Adenosine monophosphate (AUC: 0.82) Spermidine (AUC: 0.85) Uracil (AUC: 0.91) | [65] |
n = 25 Validation set: n = 51 | n = 25 (normal adjacent tissue) Validation set: n = 19 (BPH) | LC–MS | PCA PLS-DA Model performance: AUC: 0.90–0.94 External validation: AUC: 0.84–0.91 | 1. PCs (alkyl/acyl-PCs, PC-O) (−); PEs (alkenyl/acyl-PEs, plasmalogens, PE-P) (−); Free saturated FAs (−); Diacyl-PC (+); Diacyl-PE (+); Free mono- and poly-unsaturated FAs (+) 2. CEs (+); Cholesteryl oleate (+) | 1. Lipogenesis, lipid uptake and phospholipids remodeling 2. Cholesterol metabolism | Cholesteryl oleate (AUC: 0.91(PCa vs. normal adjacent tissue) and AUC: 0.96 (PCa vs. BPH)) | [66] |
n = 25 Validation set: n = 51 | n = 25 (normal adjacent tissue) Validation set: n = 51 (benign adjacent tissue) + n = 16 (BPH) | LC–MS | PCA PLS-DA | 1. Choline (+); Citicoline (+) Nicotinamide adenine dinucleotide (+); S-Adenosylhomoserine (+); 5- Methylthioadensine (+); S-Adenosylmethionine (+); Nicotinamide mononucleotide (+); Nicotinamide adenine dinucleotide phosphate (+); Adenosine (−); Uric acid (−) 2. D-Glucosamine 6-phosphate (+); N-Acetyl-D-glucosamine (+); N-Acetyl-D-glucosamine 6-phosphate (+); UDP-Acetyl-glucosamine (+) 3. 2-Aminoadipic acid (+); Saccharopine (+); Trimethyllysine (+); Carnitine C4-OH (+); Carnitine C14:2 4. Sphingosine (+) 5. Pantothenic acid (+) 6. Dehydroepiandrosterone sulfate (−); Etiocholanolone sulfate (−) 7. Phenylacetylglutamine (−) | 1. Cysteine and methionine metabolism; NAD metabolism; phospholipid membrane metabolism 2. Hexosamine biosynthesis 3. Lysine degradation; β-oxidation of FAs 4. Sphingolipid metabolism 5. CoA homeostasis 6. Dihydro-testosterone synthesis 7. Unavailable | Sphingosine (AUC: 0.81–0.87) | [67] |
n = 34 (ERGhigh PCa) | n = 30 (ERGlow PCa) | HR-MAS 1H-NMR | PCA PLS-DA Model performance: Sens: 79% Spec: 74% Accu: 77% | ERGhigh PCa vs. ERGlow PCa 1. Citrate (−) 2. Spermine (−) | 1. TCA cycle 2. Polyamines synthesis | Citrate and spermine ERGhigh for stratification | [68] |
n = 6 (patients treated with Degarelix) + n = 7 (untreated) | n = 10 (benign from untreated patients) | HR-MAS 1H-NMR | PCA OPLS-DA | Untreated patients: 1. Lactate (+); Alanine (+) 2. Total choline (+) Patients treated with Degarelix: 1. Lactate (−) 2. Total choline (−) | 1. Energetic metabolism 2. Choline metabolism; Phospholipid membrane metabolism | Lactate Total choline | [69] |
n = 50 (patients that developed recurrence after prostatectomy) | n = 60 (patients that did not develop recurrence after prostatectomy) | HR-MAS 1H-NMR | PLS-DA Model performance: Sens: 92% Spec: 92% Accu: 92% | Increased risk of recurrence 1. (Total choline + creatine)/spermine (+); (Total choline + creatine)/citrate (+) 2. Spermine (−) 3. Citrate (−) | 1. Choline metabolism; Phospholipid membrane metabolism 2. Polyamines synthesis 3. TCA cycle | Spermine Total choline + creatine/spermine | [70] |
n = 21 Validation set: n = 50 | n = 21 (benign adjacent tissue) Validation set: n = 50 | GC–MS | OSC-PLS-DA | 1. Fumarate (+); Malate (+); Succinate (+); 2- Hydroxyglutaric acid (+); Alanine (+); Glycerol-3-phosphate (+) 2. 11-Eicosenoic acid (+); Docosanoic acid (+); Eicosanoic acid (+) 3. Glycerolipids (+); Myo-inositol (+) 4. Uracil (+) 5. Proline (+) | 1. Energetic metabolism (TCA cycle) 2. FAs metabolism 3. Membrane metabolism 4. Pyrimidine metabolism 5. Amino acid metabolism | - | [71] |
n = 199 Validation set n = 166 | n = 179 (benign adjacent tissue) n = 15 (BPH) + n = 14 (cancer-free patients) Validation set n = 159 (benign adjacent tissue) | HR-MAS 1H-NMR | Linear Regressions | 1. Myo-inositol (+); Phosphocholine (+); Glycerophosphocholine (+) 2. Lactate (+); Taurine (−) 3. Histidine (+) 4. Phenylalanine (−); Glutamate (+) | 1. Membrane metabolism 2. Energetic metabolismo 3. Histidine metabolism 4. Amino acid metabolism | Myo-inositol | [72] |
n = 13 (American African population) + n = 13 (Caucasian American population) | n = 12 (American African population) + n = 9 (Caucasian American population) (benign adjacent tissue) | GC-FID ESI–MS | Generalized linear model | Saturated total FAs (+); Arachidic acid (+); Myristic acid (+) Monounsaturated total FAs (+); Polyunsaturated FAs (+); n-6 Total FAs (+); n-3 Free FAs (+) | Lipid metabolism | Arachidic acid (sens: 78%; spec: 75%; accu: 80%) (American African population) Myristic acid (sens: 85%; spec: 89%; accu: 98%) (Caucasian American population) | [73] |
n = 13 | n = 13 (benign adjacent tissue) | LC–MS CE–MS | OPLS-DA | 1. Cysteine (+); Lysine (+); Methionine (+); Phenylalanine (+); Tyrosine (+); Branched-chain amino acids (leucine, isoleucine, and valine) (+); Fumarate (+) 2. Glycerophospholipids (+) 3. Fructose 6-phosphate (−); Fructose 1,2-biphosphate (−); Pyruvate (−); Citrate (−); cis-Aconitate (−); Isocitrate (−) 4. N-Acetylglucosamine (+); N-Acetylglucosamine 1-phosphate (+), N-acetylglucosamine 6-phosphate (+); Galacturonate 1-phosphate (+) 5. Aspartate (+); Argininosuccinate (+); Arginine (+); Proline (+); Fumarate (+) | 1. Amino acid metabolism 2. Lipid metabolism 3. TCA cycle 4. Hexosamine pathway 5. Urea cycle | Fumarate Citrate Isocitrate | [74] |
n = 58 | n = 18 (BPH) | 1H-NMR | PCA PLS-DA | 1. Creatine (−); Creatinine (−); Glutamate (+); Glutamine (+); Formate (+); Tyrosine (+); Uridine (+) 2. Citrate (−) 3. Trimethylamine (+) | 1. Amino acid metabolism 2. TCA cycle 3. Membrane metabolism | Citrate Glutamine | [75] |
n = 70 43 GS (3 + 3) 16 GS (3 + 4) 10 GS (4 + 3) 1 GS (4 + 4) | n = 59 (benign adjacent tissue) | 1H HR MAS NMR 1H/31P NMR LC–MS | PCA OPLS-DA | PCa vs. Benign 1. Citrate (−); Succinate/ malate (+); Fumarate (+) 2. Putrescine (−); Spermidine (−); Spermine (−) 3. Glutamate (+) 4. Uracil (+) 5. Hypoxanthine (+); Inosine (+) 6. α-Glucose (−) 7. SM (−) 8. NAD+ (−) 9. Phosphocholine (+); PE (+); LPC (−); 10. Arginine (+); 11. Docosapentanoic acid (22:5) (+); Oleic acid (18:1) (+); Linoleic acid (+); Docosahexaenoic acid (22:6) (+); Maleic acid (+); GS ≥7 vs. GS 6 3. Glutamate (+) 5. Hypoxanthine (+) 6. α-Glucose (−) 7. Sphingosine (+) 9. Glycerophosphorylcholine (+); Phosphocholine (+) 10. Arginine (+) 11. Hexanoylcarnitine (+) 12. Tyrosine (+); Valine (+); Phenylalanine (+) 13. Ascorbate (+) 14. 2-Hydroxybutyrate (+) 15. Lysine (+); Threonine (+) | 1. TCA cycle 2. Polyamines synthesis 3. Glutamate metabolism 4. Pyrimidine metabolism 5. Purine metabolism 6. Glycolysis 7. Sphingolipid metabolism 8. Nicotinate and nicotinamide metabolism 9. Glycerophosphocholine metabolism; Phospholipid membrane metabolism 10. Urea cycle 11. Free FAs oxidation 12. Branched-chain amino acid meta-bolism 13. Inositol metabolism 14. Propanoate metabolism 15. Aminoacyl-tRNA biosynthesis | Phosphocholine Glutamate Hypoxanthine Arginine α-Glucose | [76] |
PCa Group | Control Group | Analytical Platform | Statistical Methods | Altered Metabolites (Direction of Variation) | Dysregulated Metabolic Pathways | Candidate Biomarkers | Ref. |
---|---|---|---|---|---|---|---|
n = 32 | n = 32 | LC–MS GC–MS | PCA PLS-DA | 1. Glycine (−); Serine (−); Threonine (−); Alanine (−) 2. Glutamine (−); Isocitrate/Citrate (−); Aconitate (−); Succinate (−) 3. Sucrose (−); Sorbose (−); Arabinose (−); Arabitol (−); Inositol (−); Galactarate (−); Acetate (−); Propanoic acid (−); Propenoic acid (−); Butanoic acid (−) 4. Carnitines (−) 5. Sphingolipids (+) | 1. Amino acid metabolism 2. Energetic metabolism 3. Carbohydrates metabolism 4. Long-chain FAs metabolism 5. Sphingolipid metabolism | - | [92] |
n = 59 | n = 43 | GC–MS | RF LDA | 1. 2,6-Dimethyl-7-octen-2-ol (−); 3-Octanone (−); 2-Octanone (−) 2. Pentanal (+) | 1. Increased energy consumption 2. Inflammatory conditions via the excessive production of reactive oxygen species, known to induce lipid peroxidation | 4-Biomarker panel: 2,6-Dimethyl-7-octen-2-ol 3-Octanone 2-Octanone Pentanal (accu: 63–65%) | [93] |
n = 66 | n = 88 (BPH) + n = 11 (cancer-free) | UPLC-MS/MS | ROC Student′s t-test | Spermine (−) | Polyamines synthesis | Spermine (AUC: 0.83) | [94] |
n = 62 | n = 42 | LC-QTOF | PLS-DA Model Performance: Sens: 88%; Spec: 93% | 1. Dimethyllysine (−); 5-Acetamidovalerate (−); Acetyllysine (−); Trimethyllysine (−) 2. Imidazole lactate (−); Histidine (−); Methylhistidine (−); Acetylhistidine (−) 3. Urea (−); Acetylarginine (−); Acetylcitrulline (−); Acetylputrescine (−); Dimethylarginine (−); Citrulline (−) 4. Tyrosine (−) 5. 8-Methoxykynurenate (−); Kynurenic acid (−); Xanthurenic acid (−) 6. Sulfoacetate (−); Isethionate (−); Acetyltaurine (−) 7. Acetylaspartylglutamic acid (−); Acetylaspartate (−); 2-Oxoglutaramate (−) 8. 2-Pyrrolidone-5-carboxylate (−) 9. 5-Methyldeoxycytidine-5′-phosphate (−); 7-Methylguanosine (−); 7-Methylguanine (+) | 1. Lysine degradation 2. Histidine degradation 3. Arginine metabolism 4. Tyrosine metabolism 5. Tryptophan metabolism 6. Taurine metabolism 7. Alanine, aspartate and glutamate metabolism 8. Glutamine and glutamate metabolism 9. Purine and pyrimidine metabolism | - | [95] |
n = 30 Validation set n = 19 | n = 25 Validation set n = 15 | LC-ESI-MS/MS | PLS-DA Model performance: Sens: 90% Spec: 73% | 1. Taurine (+) 2. Ethanolamine (−); Phosphoethanolamine (−) 3. Arginine (−); Homocitrulline (−); Citrulline (−) 4. Isoleucine (−); Leucine (−); Phenylalanine (−); Serine (−); Tyrosine (−); Tryptophan (−); Asparagine (−); Glutamate (−); Ornithine (−); Glutamine (−) 5. Lysine (−); δ-Hydroxylysine (−) 6. 1-Methylhistidine (−); 3-Methylhistidine (−); Histidine (−) 7. α-Aminoadipic acid (−); γ-Amino-n-butyric acid (−) 8. Cystathionine (−); Cystine (−); Methionine (−) | 1. Energetic metabolism 2. Phospholipid metabolism 3. Arginine metabolism 4. Amino acid metabolism 5. Lysine degradation 6. Histidine degradation 7. FAs metabolism 8. Methionine metabolism | γ-Amino-n-butyric acid (AUC: 0.93) Phosphoethanolamine (AUC: 0.88) Ethanolamine (AUC: 0.86) Homocitrulline (AUC: 0.84) Arginine (AUC: 0.83) δ-Hydroxylysine (AUC: 0.80) Asparagine (AUC: 0.77) | [96] |
n = 64 | n = 51 (BPH) | 1H-NMR | OPLS-DA | 1. Branched-chain amino acids (+); Glutamate (+); Glycine (−); Dimethylglycine (−) 2. 4-Imidazole-acetate (−) 3. Fumarate (−) 4. Pseudouridine (+) | 1. Amino acid metabolism 2. Histidine metabolism 3. TCA cycle 4. RNA synthesis | - | [97] |
n = 29 | n = 21 (BPH) | HS-SPME-GC-MS | Shapiro–Wilks test, Levene′s test, ANOVA, Kruskal–Wallis test, Pearson test | Before prostate massage: 1. 3,5-Dimethylbenzaldehyde (−) 2. 2,6-Dimethyl-7-octen-2-ol (−); 2-Ethylhexanol (−) 3. Santolin triene (−) 4. Furan (+) After prostate massage: 2. 3-Methylphenol (+); Phenol (+) 4. Furan (+) 5. 2-Butanone (+) 6. p-Xylene (+) | 1. Alcohols and FAs metabolism 2. Lipid metabolism 3. Energetic metabolism 4. FAs oxidation 5. FAs and carbohydrate metabolism 6. Unavailable | Furan p-Xylene (correlation with GS) | [98] |
n = 40 Validation set n = 18 | n = 42 Validation set n = 18 | GC–MS | PCA PLS-DA Model performance: Sens: 78% Spec: 94–100% Accu: 86–89% AUC: 0.90–094 | 1. Methylglyoxal (−) 2. Hexanal (−) 3. 3-Phenylpropionaldehyde (+); Decanal (−) 4. 4-Methylhexan-3-one (−); Hexan-2-one (−); 2-Methylcyclopentan-1-one (−); 5-Methylheptan-2-one (−); 4,6-Dimethylheptan-2-one (−);2-Hydroxy-2-methyl-1-phenylpropan-1-one (−); Pentan-2-one (+); Cyclohexanone (+) 5. 2.5-Dimethylbenzaldehyde (+) 6. 2,6-Dimethyl-6-hepten-2-ol (−);1-Methyl-4-propan-2-ylcyclohex-2-en-1-ol (−); Linalool (−); Terpinen-4-ol (−); 3- Carene (−); Isoterpinolene (−); Menthyl acetate (−); 7. Theaspirane (−) 8. Glyoxal (−) 9. 2-Butenal (−) 10. Phenylacetaldehyde (+) 11. Butan-2-one (+) 12. Dihydroedulan IA (−); 3,4-Dimethylcyclohex-3-ene-1-carbaldehyde (−); 4-Methyldec-1-ene (−); Hexadecane (+) | 1. Pyruvate metabolism; Glycine, serine and threonine metabolism 2. Steroid hormone biosynthesis 3. Alcohols and FAs metabolism; Amino acids and carbohydrate catabolism 4. FAs metabolism 5. Alcohols and FAs metabolism 6. Lipid metabolism 7. Steroid metabolism 8. Energetic metabolism; metabolites related to cell signaling and membrane stabilization 9. Metabolites linked to lipid peroxidation 10. Phenylalanine metabolism 11. FAs and carbohydrate metabolism 12. Unavailable | 6-Biomarker-panel: Hexanal 2,5-DiMethylbenzaldehyde 4-Methylhexan-3-one Dihydroedulan IA Methylglyoxal 3- Phenylpropional-dehyde (AUC: 0.90; sens: 89%; spec: 83%; accu: 86%) | [99] |
n = 10 | n = 30 | GC–MS LC–MS | PCA OPLS-DA | 1. Pseudouridine/Uridine (+); Dihydro-uridine (+) 2. Citrate (−) Pyruvate (+); Lactate (+); Hexose (−); Pentose (+) 3. Hippuric acid (−); Aminohippuric acid (+); Phenylpyruvic acid (−); Tyrosine (−) 4. Sphinganine (−); Sphingosine (−); Serine (+) 5. Succinate (−); Glucosamine phosphate (+) 6. Xanthosine (+); Hypoxanthine (+); Xanthine (+) 7. Hydroxytryptophan (+) 8. N-linoleoyl taurine (−); Taurine (+) 9. Creatinine (+) 10. Sialyl-N-acetyllactosamine (+); Suberic acid (+); Dihydrocaffeic acid sulfate (+); Hydroxyethanesulfonate (+); Hydroxyglutaric acid (+); Acetylaminoadipic acid (+);Adipic acid (+); Hydantoinpropionate (+); Nicotine glucuronide (−); Benzoic acid (−); Oxo-heptanoic acid (+); Glucoheptanic acid (−); Aminohexadecanoic acid (−); Glucocaffeic acid (−); Trimethyluric acid (+); 3,7-Dimethyluric acid (−); 3′ Sialyllactose (+) | 1. Pyrimidine metabolism 2. Energetic metabolism (gluconeogenesis; pyruvate metabolism pathways; glycolysis; pentose phosphate pathway) 3. Phenylalanine metabolism 4. Sphingolipid metabolism 5. Alanine, aspartate and glutamate metabolism 6. Purine metabolism 7. Tryptophan metabolism 8. Taurine metabolism 9. Amino acid metabolism 10. Unavailable | - | [100] |
n = 43 | n = 48 (BPH) | GC–MS | PLS-DA PARAFAC2 Model performance: Sens: 93% Spec: 89% | 1. Androsterone (+); 16-Hydroxydehydroisoandrosterone (+); 5β-Pregnanediol (−); Enterodiol (−); Pregnanetriol (−) 2. 5-Hydroxyindoleacetic acid (+) 3. Vanillyl alcohol (+) | 1. Steroidal biosynthesis 2. Tryptophan metabolism 3. Unavailable | - | [101] |
n = 41 Validation set n = 18 | n = 42 Validation set n = 18 | GC–MS 1H-NMR | PCA PLS-DA Model performance: GC–MS Sens: 89% Spec: 83%, Accu: 86% AUC: 0.96 1H NMR Sens:67% Spec: 89% Accu:78% AUC: 0.82 | 1. Pyruvate (+); Leucine (+); Valine (+) 2. Gluconic acid (−); D-Glucose (−); D-Mannitol (−); D-Threitol (+); L-Fucitol (−); L-Threose (+) 3. Sarcosine (+); Hydroxyacetone (+); 2-Furoylglycine (−) 4. L-Arabitol (−); Ribitol (−) 5. Propylene glycol (+) 6. Acetone (+) 7. Trigonelline (−) 8. Oxalate (+) 9. Myo-inositol (−) 10. 2-Hydroxyisobutyrate (+); 2-Hydroxyvalerate (+) | 1. Valine, leucine and isoleucine biosynthesis and degradation 2. Energetic metabolism (Pentose phosphate pathway; Glycolysis or gluconeogenesis) 3. Glycine, serine and threonine metabolism 4. Pentose and glucuronate interconversions 5. Pyruvate metabolism 6. Propanoate metabolism; Synthesis and degradation of ketone bodies 7. Nicotinate and nicotinamide metabolism 8. Glyoxylate and dicarboxylate metabolism 9. Galactose metabolism; Ascorbate and aldarate metabolism; Membrane metabolism 10. Unavailable | 2-Hydroxyvalerate (sens: 86%; spec: 61%; AUC 0.76) 2-Furoylglycine (sens: 85%; spec: 62%; AUC 0.74) D-Glucose (sens: 70%; spec: 69%; AUC 0.69) D-Mannitol (sens: 78%; spec: 60%; AUC 0.69) | [102] |
n = 20 | n = 20 (cancer-free) n = 20 (bladder cancer) n = 20 (renal cancer) | GC–MS | PCA PLS-DA | 1. Methylglyoxal (−) 2. Hexanal (−) 3. 3-Phenylpropionaldehyde (+) 4. 4-Methylhexan-3-one (−) 5. 2.5-Dimethylbenzaldehyde (+) 6. Dihydroedulan IA (−) 7. Ethylbenzene (+) 8. Heptan-2-one (+); Heptan-3-one (+); 4-(2-Methylpropoxy) butan-2-one (+) 9. Methyl benzoate (+) 10. 3-Methylbenzaldehyde (+) | 1. Pyruvate metabolism; Glycine, serine and threonine metabolism 2. Steroid hormone biosynthesis 3. Alcohols and FAs metabolism; amino acid and carbohydrate catabolism 4. FAs metabolism 5. Alcohols and FAs metabolism 7. Metabolites linked to oxidative stress 8. Protein metabolism; Ketogenic pathway 9. Lipid hydrolysis 10. Metabolites linked to lipid peroxidation | 10-biomarker panel Methylglyoxal Hexanal 3-Phenylpropionaldehyde 4-Methylhexan-3-one 2.5-Dimethylbenzaldehyde Dihydroedulan IA Ethylbenzene Heptan-2-one Heptan-3-one 4-(2-Methyl-propoxy)butan-2-one Methyl benzoate 3-Methylbenzaldehyde Discrimination of PCa from control, bladder cancer and renal cancer (AUC. 0.90; sens: 76%, spec: 90%, accu: 92%) | [103] |
n = 58 | n = 18 (BPH) | 1H-NMR | PCA PLS-DA | 1. Glutamate (−); Glutamine (−); Glycine (−) 2. Citrate (−); Taurine (−) 3. Trimethylamine (+) 4. Choline (−) | 1. Amino acid metabolism 2. Energetic metabolism 3. Membrane metabolism 4. Choline metabolism; phospholipid membrane metabolism | Citrate Glutamine | [75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, A.R.; Pinto, J.; Amaro, F.; Bastos, M.d.L.; Carvalho, M.; Guedes de Pinho, P. Advances and Perspectives in Prostate Cancer Biomarker Discovery in the Last 5 Years through Tissue and Urine Metabolomics. Metabolites 2021, 11, 181. https://doi.org/10.3390/metabo11030181
Lima AR, Pinto J, Amaro F, Bastos MdL, Carvalho M, Guedes de Pinho P. Advances and Perspectives in Prostate Cancer Biomarker Discovery in the Last 5 Years through Tissue and Urine Metabolomics. Metabolites. 2021; 11(3):181. https://doi.org/10.3390/metabo11030181
Chicago/Turabian StyleLima, Ana Rita, Joana Pinto, Filipa Amaro, Maria de Lourdes Bastos, Márcia Carvalho, and Paula Guedes de Pinho. 2021. "Advances and Perspectives in Prostate Cancer Biomarker Discovery in the Last 5 Years through Tissue and Urine Metabolomics" Metabolites 11, no. 3: 181. https://doi.org/10.3390/metabo11030181
APA StyleLima, A. R., Pinto, J., Amaro, F., Bastos, M. d. L., Carvalho, M., & Guedes de Pinho, P. (2021). Advances and Perspectives in Prostate Cancer Biomarker Discovery in the Last 5 Years through Tissue and Urine Metabolomics. Metabolites, 11(3), 181. https://doi.org/10.3390/metabo11030181