Profile of Stilbenes and Other Phenolics in Fanagoria White and Red Russian Wines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenolic Levels in White and Red Fanagoria Wines
2.2. Phenolic Levels in Red Wines of Different Vintages and after Storage for Six Months
3. Materials and Methods
3.1. Wine Samples
3.2. Analytical Chromatography and Mass-Spectrometry (MS)
3.3. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeandet, P.; Douillt-Breuil, A.C.; Bessis, R.; Debord, S.; Sbaghi, M.; Adrian, M. Phytoalexins from the Vitaceae: Biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem. 2002, 50, 2731–2741. [Google Scholar] [CrossRef] [PubMed]
- Xi, H.F.; Ma, L.; Wang, L.N.; Li, S.H.; Wang, L.J. Differential response of the biosynthesis of resveratrols and flavonoids to UV-C irradiation in grape leaves. N. Z. J. Crop Hort. Sci. 2015, 43, 163–172. [Google Scholar] [CrossRef]
- Dubrovina, A.S.; Kiselev, K.V. Regulation of stilbene biosynthesis in plants. Planta 2017, 346, 597–623. [Google Scholar] [CrossRef]
- Kiselev, K.V. Perspectives for production and application of resveratrol. Appl. Microbiol. Biotechnol. 2011, 90, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Thu, Z.M.; Myo, K.K.; Aung, H.T.; Armijos, C.; Vidari, G. Flavonoids and stilbenoids of the genera Dracaena and Sansevieria: Structures and bioactivities. Molecules 2020, 25, 2608. [Google Scholar] [CrossRef] [PubMed]
- Bhat, K.P.L.; Kosmeder, J.W.; Pezzuto, J.M. Biological effects of resveratrol. Antioxid. Redox Signal. 2001, 3, 1041–1064. [Google Scholar] [CrossRef] [PubMed]
- Austin, M.B.; Noel, J.P. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 2003, 20, 79–110. [Google Scholar] [CrossRef]
- Hall, D.; De Luca, V. Mesocarp localization of a bi-functional resveratrol/hydroxycinnamic acid glucosyltransferase of Concord grape (Vitis labrusca). Plant J. 2007, 49, 579–591. [Google Scholar] [CrossRef]
- Pezet, R. Purification and characterization of a 32-kDa laccase-like stilbene oxidase produced by Botrytis cinerea Pers. Fr. FEMS Microbiol. Lett. 1998, 167, 203–208. [Google Scholar] [CrossRef]
- Schmidlin, L.; Poutaraud, A.; Claudel, P.; Mestre, P.; Prado, E.; Santos-Rosa, M.; Wiedemann-Merdinoglu, S.; Karst, F.; Merdinoglu, D.; Hugueney, P. A stress-inducible resveratrol O-methyltransferase involved in the biosynthesis of pterostilbene in grapevine. Plant Physiol. 2008, 148, 1630–1639. [Google Scholar] [CrossRef] [Green Version]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Huang, C.Y.; Ju, D.T.; Chang, C.F.; Reddy, P.M.; Velmurugan, B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomed. Taiwan 2017, 7, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Lim, W.; Bazer, F.W.; Song, G. Myricetin suppresses invasion and promotes cell death in human placental choriocarcinoma cells through induction of oxidative stress. Cancer Lett. 2017, 399, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, R.; Yonekura-Sakakibara, K.; Urano, K.; Suzuki, M.; Yamada, Y.; Nishizawa, T.; Matsuda, F.; Kojima, M.; Sakakibara, H.; Shinozaki, K.; et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant. J. 2014, 77, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.J.; Markham, K.R. Tautomerism of flavonol glucosides: Relevance to plant UV protection and flower colour. J. Photochem. Photobiol. A 1998, 118, 99–105. [Google Scholar] [CrossRef]
- Ali, K.; Maltese, F.; Choi, Y.H.; Poin, P.P.; Chan, S.; AlMahler, A. Metabolic constituents of grapevine and grape-derived products. Phytochem. Rev. 2010, 9, 357–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitrac, X.; Bornet, A.; Vanderlinde, R.; Valls, J.; Richard, T.; Delaunay, J.C.; Merillon, J.M.; Teissedre, P.L. Determination of stilbenes (delta-viniferin, trans-astringin, trans-piceid, cis- and trans-resveratrol, epsilon-viniferin) in Brazilian wines. J. Agricult. Food Chem. 2005, 53, 5664–5669. [Google Scholar] [CrossRef]
- Silva, M.J.R.; Padilha, C.V.D.; Lima, M.D.; Pereira, G.E.; Venturini, W.G.; Moura, M.F.; Tecchio, M.A. Grape juices produced from new hybrid varieties grown on Brazilian rootstocks—Bioactive compounds, organic acids and antioxidant capacity. Food Chem. 2019, 289, 714–722. [Google Scholar] [CrossRef]
- Vitrac, X.; Monti, J.P.; Vercauteren, J.; Deffieux, G.; Merillon, J.M. Direct liquid chromatographic analysis of resveratrol derivatives and flavanonols in wines with absorbance and fluorescence detection. Anal. Chim. Acta 2002, 458, 103–110. [Google Scholar] [CrossRef]
- Sato, M.; Suzuki, Y.; Okuda, T.; Yokotsuka, K. Contents of resveratrol, piceid, and their isomers in commercially available wines made from grapes cultivated in Japan. Biosci. Biotech. Biochem. 1997, 61, 1800–1805. [Google Scholar] [CrossRef]
- Galgano, F.; Caruso, M.; Perretti, G.; Favati, F. Authentication of Italian red wines on the basis of the polyphenols and biogenic amines. Eur. Food Res. Technol. 2011, 232, 889–897. [Google Scholar] [CrossRef]
- Dekic, S.; Milosavljevic, S.; Vajs, V.; Jovic, S.; Petrovic, A.; Nikicevic, N.; Manojlovic, V.; Nedovic, V.; Tesevic, V. Trans- and cis-resveratrol concentration in wines produced in Serbia. J. Serb. Chem. Soc. 2008, 73, 1027–1037. [Google Scholar] [CrossRef]
- Portu, J.; López, R.; Santamaría, P.; Garde-Cerdán, T. Methyl jasmonate treatment to increase grape and wine phenolic content in Tempranillo and Graciano varieties during two growing seasons. Sci. Hortic. 2018, 240, 378–386. [Google Scholar] [CrossRef]
- Faustino, R.S.; Sobrattee, S.; Edel, A.L.; Pierce, G.N. Comparative analysis of the phenolic content of selected Chilean, Canadian and American Merlot red wines. Mol. Cell Biochem. 2003, 249, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.Q.; Zhu, D.S.; Jiang, P.E.; Tang, X.Y.; Lang, Q.H.; Yu, Q.Y.; Zhang, S.Z.; Che, Y.Z.; Feng, X.Z. Resveratrol synergizes with low doses of L-DOPA to improve MPTP-induced Parkinson disease in mice. Behav. Brain Res. 2019, 367, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Song, Z.H.; Chen, Y.A.; Li, S.M.; Zhang, Y.Y.; Zhang, H.; Zhang, L.L.; Wang, C.; Wang, T. Resveratrol protects against renal damage via attenuation of inflammation and oxidative stress in high-fat-diet-induced obese mice. Inflammation 2019, 42, 937–945. [Google Scholar] [CrossRef]
- Goldberg, D.M.; Yan, J.; Soleas, G.J. Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin. Biochem. 2003, 36, 79–87. [Google Scholar] [CrossRef]
- Liu, S.X.; Li, S.Y.; Lin, G.; Markkinen, N.; Yang, H.Y.; Zhu, B.Q.; Zhang, B.L. Anthocyanin copigmentation and color attributes of bog bilberry syrup wine during bottle aging: Effect of tannic acid and gallic acid extracted from Chinese gallnut. J. Food Proc. Preserv. 2019, 43, e14041. [Google Scholar] [CrossRef]
- Aleynova, O.A.; Grigorchuk, V.P.; Dubrovina, A.S.; Rybin, V.G.; Kiselev, K.V. Stilbene accumulation in cell cultures of Vitis amurensis Rupr. overexpressing VaSTS1, VaSTS2, and VaSTS7 genes. Plant Cell Tissue Organ. Cultiv. 2016, 125, 329–339. [Google Scholar] [CrossRef]
- Tyunin, A.P.; Suprun, A.R.; Nityagovsky, N.N.; Manyakhin, A.Y.; Karetin, Y.A.; Dubrovina, A.S.; Kiselev, K.V. The effect of explant origin and collection season on stilbene biosynthesis in cell cultures of Vitis amurensis Rupr. Plant Cell Tissue Organ. Cultiv. 2019, 136, 189–196. [Google Scholar] [CrossRef]
- Suprun, A.R.; Ogneva, Z.V.; Dubrovina, A.S.; Kiselev, K.V. Effect of spruce PjSTS1a, PjSTS2, or PjSTS3 gene overexpression on stilbene biosynthesis in callus cultures of Vitis amurensis Rupr. Biotechnol. Appl. Biochem. 2020, 67, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Romero-Pérez, A.I.; Ibern-Gómez, M.; Lamuela-Raventós, R.M.; de la Torre-Boronat, M.C. Piceid, the major resveratrol derivative in grape juices. J. Agric. Food Chem. 1999, 47, 1533–1536. [Google Scholar] [CrossRef] [PubMed]
- Kiselev, K.V.; Aleynova, O.A.; Grigorchuk, V.P.; Dubrovina, A.S. Stilbene accumulation and expression of stilbene biosynthesis pathway genes in wild grapevine Vitis amurensis Rupr. Planta 2017, 245, 151–159. [Google Scholar] [CrossRef] [PubMed]
Wines | trans-resveratrol | cis-resveratrol | trans-piceid | cis-piceid | Total Stilbenes | Reference |
---|---|---|---|---|---|---|
Red wines | ||||||
Brazilian wines | 0.0–5.34 | 1.7–23.23 | 0.0–20.0 | - | 2.55–87.52 | [19] |
French wines | 0.9–3.8 | 0.0–0.9 | 0.1–26.0 | 0.0–24.1 | - | [19] |
Japanese wines | 0.13–2.25 | 0.0–2.66 | 0.17–3.54 | 0.37–6.56 | 0.82–13.43 | [20] |
Italian wines | 0.58–1.34 | 0.38–0.89 | - | - | - | [21] |
Russian wines | 0.87–4.98 | 0.0–2.97 | 1.99–17.78 | 1.35–10.23 | 5.74–37.20 | present work |
Serbian wines | 0.11–1.69 | 0.12–1.49 | - | - | - | [22] |
White and rose wines | ||||||
French wines | 0.0–0.2 | 0.0–0.1 | 0.0–2.9 | 0.0–0.9 | - | [19] |
Japanese wines | 0.01–0.66 | 0.0–0.19 | 0.02–0.75 | 0.04–1.50 | 0.12–3.02 | [20] |
Russian wines | 0.0–0.003 | 0.0–0.07 | 0.02–0.70 | 0.0–0.29 | 0.18–1.60 | present work |
Serbian wines | 0.02–0.34 | 0.05–0.58 | - | - | - | [22] |
White Wine and Vintage | Wine Collection | Wine Classification | trans-piceid | trans-piceatannol | cis-piceid | trans-resveratrol | cis-resveratrol | δ-viniferin | Total |
---|---|---|---|---|---|---|---|---|---|
Fanagoria Chardonnay, 2017 | NR | dry | 0.105 ± 0.005 c | 0 d | 0 b | 0 a | 0.072 ± 0.038 a | 0 a | 0.177 ± 0.053 c,d |
Fanagoria Riesling, 2017 | NR | semi-dry | 0.250 ± 0.069 b | 0.361 ± 0.012 a,b | 0.211 ± 0.088 a | 0 a | 0 c | 0 a | 0.821 ± 0.162 b |
Fanagoria Riesling, 2017 | Fine Select | semi-dry | 0.704 ± 0.194 a | 0.565 ± 0.115 a | 0.285 ± 0.045 a | 0 a | 0.048 ± 0.008 a | 0 a | 1.601 ± 0.335 a |
Fanagoria Sauvignon, 2017 | NR | dry | 0.016 ± 0.005 e | 0 d | 0.053 ± 0.010 b | 0 a | 0 c | 0 a | 0.068 ± 0.005 e |
Fanagoria Shardone semi-sweet white, 2017 | Fine Select | semi-sweet | 0.075 ± 0.045 c,d | 0 d | 0 b | 0.003 ± 0.002 a | 0.045 ± 0.025 a,b | 0 a | 0.123 ± 0.052 d |
Fanagoria Muscat semi-sweet, 2017 | 1957 | semi-sweet | 0.275 ± 0.085 b | 0.031 ± 0.009 c | 0 b | 0 a | 0.019 ± 0.002 b | 0 a | 0.604 ± 0.175 b |
Fanagoria White semi-sweet, 2017 | 1957 | semi-sweet | 0.056 ± 0.005 d | 0.149 ± 0.011 b | 0 b | 0 a | 0.015 ± 0.002 b | 0 a | 0.220 ± 0.016 c |
Average level | 0.185 | 0.173 | 0.068 | 0.001 | 0.025 | 0 | 0.452 |
Red Wine and Vintage | Wine Collection | Wine Classification | Content, mg/L | ||||||
---|---|---|---|---|---|---|---|---|---|
trans-piceid | trans-piceatannol | cis-piceid | trans-resveratrol | cis-resveratrol | δ-viniferin | Total | |||
Fanagoria Author’s #1, 2017 | author’s collection | dry | 2.565 ± 0.172 h | 1.719 ± 0.177 b | 1.625 ± 0.245 g | 0.865 ± 0.148 e,f | 0 g | 0.071 ± 0.014 e | 6.845 ± 0.425 g |
Fanagoria Cabernet, 2017 | Licence stockpile | dry | 4.025 ± 0.325 f | 0f | 2.536 ± 0.093 f | 1.665 ± 0.364 d,e | 1.041 ± 0.106 c | 1.348 ± 0.045 a | 10.615 ± 1.192 e |
Fanagoria Cabernet-Saperavi, 2017 | author’s collection | dry | 5.624 ± 0.453 e | 0f | 3.211 ± 0.063 e | 3.930 ± 0.156 b | 1.714 ± 0.244 a,b | 0 f | 14.479 ± 0.311 d |
Fanagoria Cahors Canonical, 2016 | 1957 | sweet | 2.651 ± 0.603 c,d | 0.149 ± 0.039 e | 2.136 ± 0.265 f | 0.645 ± 0.138 f | 0.529 ± 0.071 e | 0.150 ± 0.027 d | 6.260 ± 1.123 g |
Fanagoria Cahors Canonical, 2017 | 1957 | sweet | 4.045± 0.201 f | 0.676 ± 0.015 d | 3.190 ± 0.279 e | 1.594 ± 0.103 d | 0.726 ± 0.128 d | 1.305 ± 0.134 a | 11.536 ± 0.433 e |
Fanagoria Merlot semi-sweet, 2017 | Fine Select | semi-sweet | 16.547 ± 0.344 a,b | 1.165 ± 0.133 b,c | 7.761 ± 0.079 b | 4.562 ± 0.117 a | 1.065 ± 0.215 c | 0.584± 0.018 b,c | 31.684 ± 0.225 b |
Fanagoria Merlot, 2016 | NR | dry | 15.072 ± 0.626 b,c | 0.906 ± 0.047 c | 7.690 ± 0.221 b | 4.234 ± 0.135 a,b | 1.493 ± 0.017 b | 0.573 ± 0.074 b,c | 29.968 ± 1.174 b |
Fanagoria Merlot, 2016, after six months, storage in dark, +10 °C | NR | dry | 13.202 ± 1.186 c,d | 0.655 ± 0.072 d | 6.329 ± 0.713 c | 2.993 ± 0.344 c | 0.933 ± 0.05 c | 0.051 ± 0.018 e | 24.163 ± 1.715 c |
Fanagoria Merlot, 2017 | NR | dry | 10.885 ± 1.124 d | 1.760 ± 0.292 b | 6.163 ± 0.830 c | 4.368 ± 0.129 a | 1.467 ± 0.059 b | 0.525 ± 0.064 c | 25.168 ± 1.819 c |
Fanagoria Merlot, 2017 | F-Style | dry | 17.775 ± 0.575 a | 1.470 ± 0.456 b | 10.231 ± 0.378 a | 4.984 ± 0.275 a | 1.972 ± 0.033 a | 0.765 ± 0.134 b | 37.197 ± 1.598 a |
Fanagoria Red semi-sweet, 2017 | 1957 | semi-sweet | 4.285 ± 0.176 f | 0.953± 0.192 c | 2.124 ± 0.075 f | 2.482 ± 0.098 c | 0.971 ± 0.019 c,d | 0.580 ± 0.036 b,c | 11.395 ± 0.243 e |
Fanagoria Saperavi, 2017 | 1957 | dry | 3.379 ± 0.116 g | 0.592 ± 0.068 d | 1.351 ± 0.805 g | 1.246 ± 0.108 d,e | 0.805 ± 0.072 c | 0.055 ± 0.006 e | 7.428 ± 0.865 f |
Fanagoria Saperavi semi-sweet, 2016 | 1957 | semi-sweet | 2.485 ± 0.162 h | 0.896 ± 0.044 c | 2.478 ± 0.110 f | 0.854 ± 0.037 d,e | 0.368 ± 0.019 f | 0.059 ± 0.009 e | 7.140 ± 0.382 f |
Fanagoria Saperavi semi-sweet, 2017 | 1957 | semi-sweet | 1.990 ± 0.259 e | 0.606 ± 0.177 d | 1.684 ± 0.354 g | 1.005 ± 0.171 e,f | 0.298 ± 0.071 f | 0.153 ± 0.052 d | 5.736 ± 0.904 g |
Fanagoria Tsimlyansky black, 2016 | NR | dry | 4.054 ± 0.051 f | 2.070 ± 0.027 b | 2.867 ± 0.052 f | 1.908 ± 0.022 d | 0.949 ± 0.047 c | 0.848 ± 0.113 b,c | 12.696 ± 0.315 e |
Fanagoria Tsimlyansky black, 2017 | NR | dry | 3.909 ± 0.124 f | 4.073 ± 0.185 a | 3.927 ± 0.153 d | 2.794 ± 0.067 c | 1.145 ± 0.046 b,c | 0.602 ± 0.098 b,c | 16.450 ± 0.211 d |
Average level | 6.821 | 1.183 | 3.981 | 2.682 | 1.018 | 0.544 | 16.229 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suprun, A.R.; Dubrovina, A.S.; Tyunin, A.P.; Kiselev, K.V. Profile of Stilbenes and Other Phenolics in Fanagoria White and Red Russian Wines. Metabolites 2021, 11, 231. https://doi.org/10.3390/metabo11040231
Suprun AR, Dubrovina AS, Tyunin AP, Kiselev KV. Profile of Stilbenes and Other Phenolics in Fanagoria White and Red Russian Wines. Metabolites. 2021; 11(4):231. https://doi.org/10.3390/metabo11040231
Chicago/Turabian StyleSuprun, Andrey R., Alexandra S. Dubrovina, Alexey P. Tyunin, and Konstantin V. Kiselev. 2021. "Profile of Stilbenes and Other Phenolics in Fanagoria White and Red Russian Wines" Metabolites 11, no. 4: 231. https://doi.org/10.3390/metabo11040231
APA StyleSuprun, A. R., Dubrovina, A. S., Tyunin, A. P., & Kiselev, K. V. (2021). Profile of Stilbenes and Other Phenolics in Fanagoria White and Red Russian Wines. Metabolites, 11(4), 231. https://doi.org/10.3390/metabo11040231