Detection and Comparison of Bioactive Compounds in Different Extracts of Two Hazelnut Skin Varieties, Tonda Gentile Romana and Tonda Di Giffoni, Using a Metabolomics Approach
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Raw Materials and Extract Preparation
3.2. Determination of Total Phenols
3.3. Determination of Total Flavonoids
3.4. Measurements of Total Antioxidant Capacity Using FRAP and TEAC Assay
3.5. Proximate Composition
3.6. Analysis of Phenolic Compound Composition by LC-MS
3.7. Quantitative Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
DPPH | 2:2-diphenyl-1-picryl-hydrazyl-hydrate |
DW | Dry Weight |
ESI-MS | Electrospray Ionization- Mass Spectrometry |
FDA | Food and Drug Administration |
FDR | False Discovery Rate |
FRAP | Ferric Reducing Antioxidant Power |
GAE | Gallic Acid Equivalents |
HAT | Hydrogen Atom Transfer |
HILIC | Hydrophilic Interaction Liquid Chromatography |
IT | Injection Time |
LDL | Low-Density Lipoprotein |
MetPA | Metabolomic Pathway Analysis |
PCA | Principal Component Analysis |
PCs | Principals Components |
PDO | Protected Designation of Origin |
PGI | Protected Geographical Indication |
PLS-DA | Partial Least Squares Discriminant Analysis |
RE | Rutin Equivalents |
SET | Single Electron Transfer |
TE | Trolox Equivalents |
TEAC | Trolox Equivalent Antioxidant Capacity |
TPTZ | Fe3+-2,4,6-tripyridyl-s-triazine |
UHPLC | Ultra High-Performance Liquid Chromatography |
References
- Bernd, G. Lottermoser. Recycling, Reuse and Rehabilitation of Mine Wastes. Elements 2011, 7, 405–410. [Google Scholar] [CrossRef]
- Boye, J.I.; Arcand, Y. Current trends in green technologies in food production and processing. Food Eng. Rev. 2013, 5, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.S.; Vian, M. Review of green food processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol. 2013, 41, 357–377. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Tsatalas, P.; Galanakis, I.M. Phenols from olive mill wastewater and other natural antioxidants as UV filters in sunscreens. Environ. Technol. Innov. 2018, 9, 160–168. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Tsatalas, P.; Galanakis, I.M. Implementation of phenols recovered from olive mill wastewater as UV booster in cosmetics. Ind. Crops Prod. 2018, 111, 30–37. [Google Scholar] [CrossRef]
- Alasalvar, C.; Karamac, M.; Kosinska, A.; Rybarczyk, A.; Shahidi, F.; Amarowicz, R. Antioxidant activity of hazelnut skin phenolics. J. Agric. Food Chem. 2009, 57, 4645–4650. [Google Scholar] [CrossRef]
- Alasalvar, C.; Shahidi, F.; Liyanapathirana, C.M.; Ohshima, T. Turkish tombul hazelnut (Corylus avellana L.). 1. Compositional characteristics. J. Agric. Food Chem. 2003, 51, 3790–3796. [Google Scholar] [CrossRef]
- Baş, F.; Ömeroğlu, S.; Türdü, S.; Aktaş, S. Önemli türk fındık çeşitlerinin bileşim özelliklerinin saptanması. GIDA 1986, 11. Available online: https://dergipark.org.tr/tr/pub/gida/issue/6793/91377 (accessed on 1 August 1986).
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Ozyurt, V.H.; Otles, S. Hazelnut testa as a by-product: Nutritional composition, antioxidant activity, phenolic compound profile and dietary fiber content. Ank. Univ. Eczacilik Fak. Derg. 2018, 42, 38–57. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Renard, C.M. Interactions between polyphenols and macromolecules: Quantification methods and mechanisms. Crit. Rev. Food Sci. Nutr. 2012, 52, 213–248. [Google Scholar] [CrossRef] [PubMed]
- Contini, M.; Baccelloni, S.; Massantini, R.; Anelli, A. Extraction of natural antioxidants from hazelnut (Corylus avellana L.) shell and skin wastes by long maceration at room temperature. Food Chem. 2008, 110, 659–669. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraga, C.G.; Galleano, M.; Verstraeten, S.V.; Oteiza, P.I. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Asp. Med. 2010, 31, 435–445. [Google Scholar] [CrossRef]
- Lecour, S.; Lamont, K.T. Natural polyphenols and cardioprotection. Med. Chem. 2011, 11, 1191–1199. [Google Scholar] [CrossRef]
- Crowe, K.M.; Francis, C. Position of the academy of nutrition and dietetics: Functional foods. J. Acad. Nutr. Diet. 2013, 113, 1096–1103. [Google Scholar] [CrossRef]
- Locatelli, M.; Coisson, J.D.; Travaglia, F.; Cereti, E.; Garino, C.; D’Andrea, M.; Martelli, A.; Arlorio, M. Chemotype and genotype chemometrical evaluation applied to authentication and traceability of “Tonda Gentile Trilobata” hazelnuts from Piedmont (Italy). Food Chem. 2011, 129, 1865–1873. [Google Scholar] [CrossRef]
- Solar, A.; Stampar, F. Characterisation of selected hazelnut cultivars: Phenology, growing and yielding capacity, market quality and nutraceutical value. J. Sci. Food Agric. 2011, 91, 1205–1212. [Google Scholar] [CrossRef]
- Manfredi, M.; Robotti, E.; Quasso, F.; Mazzucco, E.; Calabrese, G.; Marengo, M. Fast classification of hazelnut cultivars through portable infrared spectroscopy and chemometrics. Spectrochim. Acta A 2018, 189, 427–435. [Google Scholar] [CrossRef]
- Wishart, D.S. Metabolomics: Applications to food science and nutrition research. Trends Food Sci. Technol. 2008, 19, 482–493. [Google Scholar] [CrossRef]
- Rocchetti, G.; Chiodelli, G.; Giuberti, G.; Ghisoni, S.; Baccolo, G.; Blasi, F.; Montesano, D.; Trevisan, M.; Lucini, L. UHPLC-ESI-QTOF-MS profile of polyphenols in Goji berries (Lycium barbarum L.) and its dynamics during in vitro gastrointestinal digestion and fermentation. J. Funct. Foods. 2018, 40, 564–572. [Google Scholar] [CrossRef]
- Del Rio, D.; Calani, L.; Dall’Asta, M.; Brighenti, F. Polyphenolic Composition of Hazelnut Skin. J. Agric. Food Chem. 2011, 59, 9935–9941. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, K.S.; Yılmaz, C.; Durmaz, G.; Gökmen, V. Hazelnut skin powder: A new brown colored functional ingredient. Food Res. Int. 2014, 65, 291–297. [Google Scholar] [CrossRef]
- Romano, B.; Pagano, E.; Montanaro, V.; Fortunato, A.F.; Milic, N.; Francesca Borrelli, F. Novel Insights into the Pharmacology of Flavonoids. Phytother. Res. 2013, 27, 1588–1596. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.M.; Deng, X.T.; Zhoub, J.; Li, Q.P.; Ge, X.; Miao, L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed. Pharmacother. 2020, 121, 109604. [Google Scholar] [CrossRef]
- Vasantha-Rupasinghe, H.; Kathirvel, P.; Huber, G.M. Ultrasonication-assisted solvent extraction of quercetin glycosides from ‘Idared’ apple peels. Molecules 2011, 16, 9783–9791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javed, H.; Khan, M.M.; Ahmad, A.; Vaibhav, K.; Ahmad, M.E.; Khan, A.; Ashafaq, M.; Islam, F.; Siddiqui, M.S.; Safhi, M.M.; et al. Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience 2012, 17, 340–352. [Google Scholar] [CrossRef]
- Richetti, S.K.; Blank, M.; Capiotti, K.M.; Piato, A.L.; Bogo, M.R.; Vianna, M.R.; Bonan, C.D. Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. Behav. Brain Res. 2011, 217, 10–15. [Google Scholar] [CrossRef]
- Nassiri-Asl, M.; Hosseinzadeh, H. Review of the pharmacological effects of Vitis vinifera (Grape) and its bioactive compounds. Hytother. Res. 2010, 23, 1197–1204. [Google Scholar] [CrossRef]
- Mellou, F.; Loutrari, H.; Stamatis, H.; Roussos, C.; Kolisis, F.N. Enzymatic esterification of flavonoids with unsaturated fatty acids: Effect of the novel esters on vascular endothelial growth factor release from K562 cells. Process Biochem. 2006, 41, 2029–3204. [Google Scholar] [CrossRef]
- Trumbeckaite, S.; Bernatoniene, J.; Majiene, D.; Jakstas, V.; Savickas, A.; Toleikis, A. The effect of flavonoids on rat heart mitochondrial function. Biomed. Pharmacother. 2006, 60, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Schwedhelm, E.; Maas, R.; Troost, R.; Böger, R.H. Clinical pharmacokinetics of antioxidants and their impact on systemic oxidative stress. Clin. Pharmacokinet. 2003, 42, 437–459. [Google Scholar] [CrossRef] [PubMed]
- Janbaz, K.H.; Saeed, S.A.; Gilani, A.H. Protective effect of rutin on paracetamol and CCl4-induced hepatotoxicity in rodents. Fitoterapia 2002, 73, 557–563. [Google Scholar] [CrossRef]
- La Casa, C.; Villegas, I.; Alarcón de la Lastra, C.; Motilva, V.; Martín Calero, M.J. Evidence for protective and antioxidant properties of rutin, a natural flavone, against ethanol induced gastric lesions. J. Ethnopharmacol. 2000, 71, 45–53. [Google Scholar] [CrossRef]
- Wang, D.; Sun-Waterhouse, D.; Li, F.; Xin, L.; Li, D. MicroRNAs as molecular targets of quercetin and its derivatives underlying their biological effects: A preclinical strategy. Crit. Rev. Food Sci. Nutr. 2019, 59, 2189–2201. [Google Scholar] [CrossRef]
- Nardini, M.; D’Aquino, M.; Tomassi, G.; Gentili, V.; di Felice, M.; Scaccini, C. Inhibition of human low density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radic. Biol. Med. 1995, 19, 541–552. [Google Scholar] [CrossRef]
- Elmas, E.P.; AyşeKaradağ, O.; Alasalvar, C. Phenolic profiles and antioxidant activity of Turkish Tombul hazelnut samples (natural, roasted, and roasted hazelnut skin). Food Chem, 2018; 244, 102–108. [Google Scholar] [CrossRef]
- Vinayagam, R.; Jayachandran, M.; Xu, B. Antidiabetic effects of simple phenolic acids: A comprehensive review. Phytother. Res. 2016, 30, 184–199. [Google Scholar] [CrossRef]
- Wang, S.J.; Zeng, J.; Yang, B.K.; Zhong, Y.M. Bioavailability of caffeic acid in rats and its absorption properties in the Caco-2 cell model. Pharm. Biol. 2014, 52, 1150–1157. [Google Scholar] [CrossRef]
- Olthof, M.R.; Hollman, M.R.; Katan, M.B. Chlorogenic acid and caffeic acid are absorbed in humans. J. Nutr. 2001, 131, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Alasalvar, C.; Liyana-Pathirana, C.M. Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. J. Agric. Food Chem. 2007, 55, 1212–1220. [Google Scholar] [CrossRef]
- Ivanovic, S.; Avramovic, N.; Dojcinovic, B.; Trifunovic, S.; Novakovic, M.; Teševic, V.; Mandic, B. Chemical Composition, Total Phenols and Flavonoids Contents and Antioxidant Activity as Nutritive Potential of Roasted Hazelnut Skins (Corylus avellana L.). Foods 2020, 9, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. 1965, 16, 144–158. [Google Scholar]
- Qin, P.; Wang, Q.; Shan, F.; Hou, Z.; Ren, G. Nutritional composition and flavonoids content of flour from different buckwheat cultivars. Int. J. Food Sci. Technol. 2010, 45, 951–958. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzym. 1999, 299, 15–27. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
Varieties | Antioxidant Capacity | Polyphenols | Flavonoids | |
---|---|---|---|---|
TEAC mM TE | FRAP mM TE | mg/g GAE | mg/g RE | |
Tonda di Giffoni | 13.2 ± 0.1 a | 23.3 ± 5.8 a | 155.3 ± 2.1 a | 27.2 ± 0.7 a |
Tonda Gentile Romana | 13.1 ± 0.2 a | 23.1 ± 6.2 a | 153.3 ± 3.9 a | 27.8 ± 2.3 a |
Varieties | Moisture | Ashes | Lipids | Proteins | Carbohydrates |
---|---|---|---|---|---|
% (g/100 g) | g/100 g DW | g/100 g DW | g/100 g DW | g/100 g DW | |
Tonda di Giffoni | 4.7 ± 0.2 a | 3.0 ± 0.02 a | 18.4 ± 0.1 b | 7.5 ± 0.2 a | 71.1 ± 0.3 a |
Tonda Gentile Romana | 4.1 ± 0.1 a | 2.8 ± 0.02 a | 26.4 ± 0.1 a | 8.9 ± 0.3 a | 61.9 ± 0.2 b |
Compound | m/z (g/mol) | Tonda di Giffoni | DEV. SD | Tonda Gentile Romana | DEV. SD |
---|---|---|---|---|---|
Chlorflavonin | 378.8 | 3.32 × 104 | 2.29 × 104 | 3.54 × 104 | 7.78 × 103 |
Flavonol 7-O-beta-D-glucoside | 416.4l | 1.03 × 106 | 2.10 × 106 | 9.68 × 104 | 1.66 × 104 |
Naringenin 7-O-beta-D-glucoside | 434.4l | 3.91 × 106 | 3.92 × 106 | 4.26 × 105 | 7.01 × 104 |
Leucocyanidin | 306.27 | 3.45 × 106 | 4.30 × 106 | 1.89 × 106 | 1.84 × 105 |
Caffeic acid 3-glucoside | 342.3 | 6.31 × 104 | 3.19 × 104 | 2.50 × 105 | 3.23 × 104 |
Epigallocatechin-(4beta->8)-epicatechin-3-O-gallate ester | 746.6 | 6.55 × 105 | 1.35 × 106 | 1.02 × 105 | 9.82 × 103 |
Kaempferol 3-O-beta-D-glucosylgalactoside | 610.5 | 8.40 × 105 | 1.75 × 106 | 5.26 × 104 | 8.20 × 103 |
Vitexin 2---O-beta-D-glucoside | 593.5 | 6.18 × 105 | 1.31 × 106 | 8.82 × 104 | 1.23 × 104 |
Kaempferitrin | 578.5 | 1.74 × 106 | 2.80 × 106 | 7.32 × 105 | 2.05 × 106 |
(-)-Catechin | 290.27 | 1.93 × 107 | 2.11 × 107 | 6.31 × 107 | 9.78 × 106 |
Flavin | 453.3 | 2.15 × 106 | 2.40 × 106 | 1.93 × 105 | 1.56 × 104 |
n-Propyl gallate | 212.2 | 3.77 × 106 | 3.75 × 106 | 4.03 × 106 | 7.47 × 105 |
Methyl caffeate | 194.18 | 1.01 × 106 | 8.16 × 105 | 1.44 × 106 | 2.40 × 105 |
Laricitrin | 332.26 | 1.86 × 105 | 4.56 × 104 | 2.41 × 105 | 5.02 × 104 |
Syringetin | 346.3 | 8.81 × 104 | 1.32 × 104 | 5.22 × 104 | 6.87 × 103 |
Apigenin | 270.24 | 5.72 × 106 | 1.31 × 106 | 4.69 × 106 | 7.24 × 105 |
Kaempferol | 286.24 | 1.06 × 106 | 2.52 × 105 | 2.13 × 106 | 4.12 × 105 |
Caffeate | 180.16 | 3.67 × 105 | 5.69 × 104 | 6.77 × 105 | 8.26 × 104 |
3-Coumaric acid | 164.16 | 2.46 × 106 | 3.65 × 105 | 2.56 × 106 | 3.86 × 105 |
Neochlorogenic acid | 354.31 | 3.52 × 105 | 6.34 × 104 | 1.80 × 104 | 2.90 × 103 |
Salicylate | 137.11 | 5.15 × 107 | 9.23 × 106 | 2.85 × 107 | 5.83 × 106 |
Vitexin | 432.4 | 1.91 × 106 | 3.80 × 105 | 3.30 × 106 | 6.04 × 105 |
Astragalin | 448.4 | 1.45 × 107 | 1.48 × 106 | 2.57 × 107 | 2.67 × 106 |
Quercetin 3-O-glucoside | 464.4 | 1.23 × 106 | 8.96 × 105 | 3.20 × 106 | 3.99 × 105 |
Naringenin | 272.25 | 4.83 × 106 | 1.06 × 106 | 5.77 × 106 | 1.07 × 106 |
Eriodictyol | 288.25 | 3.73 × 106 | 3.30 × 105 | 7.03 × 106 | 8.10 × 105 |
Luteoforol | 290.27 | 4.15 × 107 | 6.45 × 106 | 6.60 × 107 | 1.01 × 107 |
Ferulate | 194.18 | 1.61 × 106 | 3.04 × 105 | 1.47 × 106 | 2.32 × 105 |
Sinapate | 224.21 | 1.35 × 106 | 7.66 × 105 | 5.31 × 106 | 7.88 × 105 |
Sinapine | 310.36 | 1.43 × 105 | 3.07 × 104 | 4.68 × 105 | 8.39 × 104 |
4-Hydroxystyrene | 120.15 | 2.65 × 107 | 3.53 × 106 | 1.07 × 108 | 1.34 × 107 |
Salicylaldehyde | 122.12 | 4.84 × 106 | 8.03 × 105 | 9.72 × 106 | 1.19 × 106 |
Isochorismate | 224.17 | 3.77 × 105 | 1.01 × 105 | 1.48 × 105 | 1.79 × 104 |
Salicin | 286.28 | 4.12 × 105 | 4.67 × 105 | 6.24 × 105 | 9.80 × 104 |
2-3-Dihydroxybenzoate | 153.11 | 1.34 × 107 | 1.53 × 106 | 6.16 × 106 | 8.50 × 105 |
p-Coumaroyl quinic acid | 338.31 | 2.58 × 106 | 2.83 × 106 | 1.93 × 105 | 3.59 × 104 |
Naringin chalcone | 580.5 | 1.46 × 106 | 1.12 × 106 | 7.10 × 105 | 1.14 × 105 |
Kaempferide | 300.26 | 8.11 × 104 | 4.59 × 104 | 3.24 × 105 | 6.81 × 104 |
Quercetin | 302.2 | 8.58 × 106 | 1.94 × 106 | 5.10 × 106 | 1.01 × 106 |
Rutin | 610.5 | 2.94 × 105 | 1.08 × 105 | 9.86 × 105 | 2.05 × 105 |
Myricetin | 318.23 | 1.04 × 106 | 1.92 × 105 | 2.36 × 105 | 3.51 × 104 |
Phenolic Compound | Tonda di Giffoni | Tonda Gentile Romana |
---|---|---|
mg/100 g | mg/100 g | |
Quercetin | 1.4 ± 0.07 a | 0.8 ± 0.01 b |
Rutin | 0.4 ± 0.04 b | 0.8 ± 0.01 a |
Vitexin | 2.5 ± 0.1 b | 3.9 ± 0.4 a |
Caffeic Acid | 0.6 ± 0.05 a | 0.7 ± 0.05 a |
P-Coumeric Acid | 0.7 ± 0.08 a | 0.7 ± 0.06 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lelli, V.; Molinari, R.; Merendino, N.; Timperio, A.M. Detection and Comparison of Bioactive Compounds in Different Extracts of Two Hazelnut Skin Varieties, Tonda Gentile Romana and Tonda Di Giffoni, Using a Metabolomics Approach. Metabolites 2021, 11, 296. https://doi.org/10.3390/metabo11050296
Lelli V, Molinari R, Merendino N, Timperio AM. Detection and Comparison of Bioactive Compounds in Different Extracts of Two Hazelnut Skin Varieties, Tonda Gentile Romana and Tonda Di Giffoni, Using a Metabolomics Approach. Metabolites. 2021; 11(5):296. https://doi.org/10.3390/metabo11050296
Chicago/Turabian StyleLelli, Veronica, Romina Molinari, Nicolò Merendino, and Anna Maria Timperio. 2021. "Detection and Comparison of Bioactive Compounds in Different Extracts of Two Hazelnut Skin Varieties, Tonda Gentile Romana and Tonda Di Giffoni, Using a Metabolomics Approach" Metabolites 11, no. 5: 296. https://doi.org/10.3390/metabo11050296
APA StyleLelli, V., Molinari, R., Merendino, N., & Timperio, A. M. (2021). Detection and Comparison of Bioactive Compounds in Different Extracts of Two Hazelnut Skin Varieties, Tonda Gentile Romana and Tonda Di Giffoni, Using a Metabolomics Approach. Metabolites, 11(5), 296. https://doi.org/10.3390/metabo11050296