IDARE2—Simultaneous Visualisation of Multiomics Data in Cytoscape
Abstract
:1. Introduction
2. Results
2.1. Subnetwork Generation
2.2. Duplication of Highly Connected Nodes
2.3. SBML Annotation for Metabolic Networks
2.4. Examples
3. Discussion
4. Materials and Methods
4.1. Extensibility
4.2. Availability and Requirements
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COBRA | COnstraint Based Reconstruction and Analysis |
SBML | Systems Biology Markup Language |
SOFT | Simple Omnibus Format in Text |
IDARE | Integrated DAtanodes of REgulation |
API | Application Programming Interface |
References
- Gehlenborg, N.; O’Donoghue, S.I.; Baliga, N.S.; Goesmann, A.; Hibbs, M.A.; Kitano, H.; Kohlbacher, O.; Neuweger, H.; Schneider, R.; Tenenbaum, D.; et al. Visualization of omics data for systems biology. Nat. Methods 2010, 7, S56–S68. [Google Scholar] [CrossRef]
- García-Alcalde, F.; García-López, F.; Dopazo, J.; Conesa, A. Paintomics: A web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics 2011, 27, 137–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-de Diego, R.; Tarazona, S.; Martínez-Mira, C.; Balzano-Nogueira, L.; Furió-Tarí, P.; Pappas Georgios, J.J.; Conesa, A. PaintOmics 3: A web resource for the pathway analysis and visualization of multi-omics data. Nucleic Acids Res. 2018, 46, W503–W509. [Google Scholar] [CrossRef] [Green Version]
- Gerasch, A.; Faber, D.; Küntzer, J.; Niermann, P.; Kohlbacher, O.; Lenhof, H.P.; Kaufmann, M. BiNA: A visual analytics tool for biological network data. PLoS ONE 2014, 9, e87397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, Y.; Yu, N.; Seo, J.; Kim, S.; Lee, S. MONGKIE: An integrated tool for network analysis and visualization for multi-omics data. Biol. Direct. 2016, 11, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koblitz, J.; Schomburg, D.; Neumann-Schaal, M. MetaboMAPS: Pathway sharing and multi-omics data visualization in metabolic context [version 2; peer review: 2 approved]. F1000Research 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Schultz, A.; Akbani, R. SAMMI: A semi-automated tool for the visualization of metabolic networks. Bioinformatics 2019, 36, 2616–2617. [Google Scholar] [CrossRef]
- King, Z.A.; Dräger, A.; Ebrahim, A.; Sonnenschein, N.; Lewis, N.E.; Palsson, B.O. Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways. PLoS Comput. Biol. 2015, 11, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karp, P.D.; Midford, P.E.; Billington, R.; Kothari, A.; Krummenacker, M.; Latendresse, M.; Ong, W.K.; Subhraveti, P.; Caspi, R.; Fulcher, C.; et al. Pathway Tools version 23.0 update: Software for pathway/genome informatics and systems biology. Briefings Bioinform. 2019, 22, 109–126. [Google Scholar] [CrossRef] [Green Version]
- Hari, A.; Lobo, D. Fluxer: A web application to compute, analyze and visualize genome-scale metabolic flux networks. Nucleic Acids Res. 2020, 48, W427–W435. [Google Scholar] [CrossRef]
- Droste, P.; Nöh, K.; Wiechert, W. Omix: A Visualization Tool for Metabolic Networks with Highest Usability and Customizability in Focus. Chem. Ing. Tech. 2013, 85, 849–862. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Saito, R.; Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.L.; Lotia, S.; Pico, A.R.; Bader, G.D.; Ideker, T. A travel guide to Cytoscape plugins. Nat. Methods 2012, 9, 1069–1076. [Google Scholar] [CrossRef] [Green Version]
- Karnovsky, A.; Weymouth, T.; Hull, T.; Tarcea, V.G.; Scardoni, G.; Laudanna, C.; Sartor, M.A.; Stringer, K.A.; Jagadish, H.V.; Burant, C.; et al. Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics 2012, 28, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Morris, J.H.; Kuchinsky, A.; Ferrin, T.E.; Pico, A.R. enhancedGraphics: A Cytoscape app for enhanced node graphics. F1000Res 2014, 3, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M.; Goto, S.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. Data, information, knowledge and principle: Back to metabolism in KEGG. Nucleic Acids Res. 2014, 42, D199–D205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caspi, R.; Altman, T.; Billington, R.; Dreher, K.; Foerster, H.; Fulcher, C.A.; Holland, T.A.; Keseler, I.M.; Kothari, A.; Kubo, A.; et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 2014, 42, D459–D471. [Google Scholar] [CrossRef] [Green Version]
- Barsky, A.; Gardy, J.L.; Hancock, R.E.W.; Munzner, T. Cerebral: A Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 2007, 23, 1040–1042. [Google Scholar] [CrossRef] [Green Version]
- Galhardo, M.; Sinkkonen, L.; Berninger, P.; Lin, J.; Sauter, T.; Heinäniemi, M. Integrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network. Nucleic Acids Res. 2014, 42, 1474–1496. [Google Scholar] [CrossRef] [Green Version]
- Orth, J.D.; Palsson, B.Ø. Systematizing the generation of missing metabolic knowledge. Biotechnol. Bioeng. 2010, 107, 403–412. [Google Scholar] [CrossRef] [Green Version]
- König, M.; Dräger, A.; Holzhütter, H.G. CySBML: A Cytoscape plugin for SBML. Bioinformatics 2012, 28, 2402–2403. [Google Scholar] [CrossRef] [Green Version]
- Schellenberger, J.; Lewis, N.E.; Palsson, B.Ø. Elimination of thermodynamically infeasible loops in steady-state metabolic models. Biophys. J. 2011, 100, 544–553. [Google Scholar] [CrossRef] [Green Version]
- Pfau, T.; Pacheco, M.P.; Sauter, T. Towards improved genome-scale metabolic network reconstructions: Unification, transcript specificity and beyond. Brief Bioinform. 2015, 17. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, N.; Thomas, A.; Watanabe, L.; Vazirabad, I.Y.; Kofia, V.; Gómez, H.F.; Mittag, F.; Matthes, J.; Rudolph, J.; Wrzodek, F.; et al. JSBML 1.0: Providing a smorgasbord of options to encode systems biology models. Bioinformatics 2015, 31, 3383–3386. [Google Scholar] [CrossRef]
- Li, C.; Courtot, M.; Le Novère, N.; Laibe, C. BioModels.net Web Services, a free and integrated toolkit for computational modelling software. Brief Bioinform. 2010, 11, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Orth, J.D.; Fleming, R.M.T.; Palsson, B.O. Reconstruction and Use of Microbial Metabolic Networks: The Core E. coli Metabolic Model as an Educational Guide. EcoSal Plus 2010. [Google Scholar] [CrossRef]
- Soufi, B.; Krug, K.; Harst, A.; Macek, B. Characterization of the E. coli proteome and its modifications during growth and ethanol stress. Front. Microbiol. 2015, 6, 103. [Google Scholar] [CrossRef]
- Horinouchi, T.; Tamaoka, K.; Furusawa, C.; Ono, N.; Suzuki, S.; Hirasawa, T.; Yomo, T.; Shimizu, H. Transcriptome analysis of parallel-evolved Escherichia coli strains under ethanol stress. BMC Genom. 2010, 11, 579. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, L.; Tian, X.; Gao, L.; Niu, X.; Shi, M.; Zhang, W. Global Metabolomic and Network analysis of E. coli Responses to Exogenous Biofuels. J. Proteome Res. 2013, 12, 5302–5312. [Google Scholar] [CrossRef]
- Goodarzi, H.; Bennett, B.D.; Amini, S.; Reaves, M.L.; Hottes, A.K.; Rabinowitz, J.D.; Tavazoie, S. Regulatory and metabolic rewiring during laboratory evolution of ethanol tolerance in E. coli. Mol. Syst. Biol. 2010, 6, 378. [Google Scholar] [CrossRef]
- van Steijn, L.; Verbeek, F.J.; Spaink, H.P.; Merks, R.M.H. Predicting Metabolism from Gene Expression in an Improved Whole-Genome Metabolic Network Model of Danio rerio. Zebrafish 2019, 16, 348–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfau, T.; Galhardo, M.; Lin, J.; Sauter, T. IDARE2—Simultaneous Visualisation of Multiomics Data in Cytoscape. Metabolites 2021, 11, 300. https://doi.org/10.3390/metabo11050300
Pfau T, Galhardo M, Lin J, Sauter T. IDARE2—Simultaneous Visualisation of Multiomics Data in Cytoscape. Metabolites. 2021; 11(5):300. https://doi.org/10.3390/metabo11050300
Chicago/Turabian StylePfau, Thomas, Mafalda Galhardo, Jake Lin, and Thomas Sauter. 2021. "IDARE2—Simultaneous Visualisation of Multiomics Data in Cytoscape" Metabolites 11, no. 5: 300. https://doi.org/10.3390/metabo11050300
APA StylePfau, T., Galhardo, M., Lin, J., & Sauter, T. (2021). IDARE2—Simultaneous Visualisation of Multiomics Data in Cytoscape. Metabolites, 11(5), 300. https://doi.org/10.3390/metabo11050300