Identification of Key Volatiles Differentiating Aromatic Rice Cultivars Using an Untargeted Metabolomics Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. VOC Metabolites in Five Rice Varieties
2.2. Multivariate Analyses of Metabolites in the Five Rice Varieties
2.2.1. Variation in Metabolic VOCs among Aromatic Rice Varieties
2.2.2. Variations in Metabolic VOCs between Aromatic and Non-Aromatic Rice
3. Materials and Methods
3.1. Sample Preparation
3.2. Metabolite Extraction
3.3. GC-MS Analysis
3.4. Multivariate Metabolite Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, Y.; Tan, X.; Zeng, Y.; Xie, X.; Pan, X.; Shi, Q.; Zhang, J. Changes in the rice grain quality of different high-quality rice varieties released in southern china from 2007 to 2017. J. Cereal Sci. 2019, 87, 111–116. [Google Scholar] [CrossRef]
- Kumar Verma, D.; Prakash Srivastav, P. A paradigm of volatile aroma compounds in rice and their product with extraction and identification methods: A comprehensive review. Food Res. Int. 2019, 130, 1–33. [Google Scholar] [CrossRef]
- Prodhan, Z.H.; Shu, Q. Rice aroma: A natural gift comes with price and the way forward. Rice Sci. 2020, 27, 86–100. [Google Scholar] [CrossRef]
- Ch, R.; Chevallier, O.; McCarron, P.; McGrath, T.F.; Wu, D.; Nguyen Doan Duy, L.; Elliott, C.T. Metabolomic fingerprinting of volatile organic compounds for the geographical discrimination of rice samples from China, Vietnam and India. Food Chem. 2020, 334, 127553. [Google Scholar] [CrossRef]
- Dou, Z.; Tang, S.; Chen, W.; Zhang, H.; Li, G.; Liu, Z.; Ding, Y. Effects of open-field warming during grain-filling stage on grain quality of two japonica rice cultivars in lower reaches of Yangtze River delta. J. Cereal Sci. 2018, 81, 118–126. [Google Scholar] [CrossRef]
- Song, H.; Lu, B.; Ye, C.; Li, J.; Zhu, Z.; Zheng, L. Fraud vulnerability quantitative assessment of wuchang rice industrial chain in china based on ahp-ewm and ann methods. Food Res. Int. 2020, 140, 109805. [Google Scholar] [CrossRef]
- Cavin, C.; Cottenet, G.; Fuerer, C.; Tran, L.-A.; Zbinden, P. Food fraud vulnerabilities in the supply chain: An industry perspective. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Anami, B.S.; Malvade, N.N.; Palaiah, S. Automated recognition and classification of adulteration levels from bulk paddy grain samples. Inform. Process Agr. 2018, 6, 47–60. [Google Scholar] [CrossRef]
- Chung, I.; Kim, J.; Prabakaran, M.; Yang, J.; Kim, S. Authenticity of rice (Oryza sativa L.) geographical origin based on analysis of C, N, O and S stable isotope ratios: A preliminary case report in Korea, China and Philippine. J. Sci. Food Agric. 2016, 96, 2433–2439. [Google Scholar] [CrossRef]
- Hu, X.; Lu, L.; Guo, Z.; Zhu, Z. Volatile compounds, affecting factors and evaluation methods for rice aroma: A review. Trends Food Sci. Technol. 2020, 97, 136–146. [Google Scholar] [CrossRef]
- Zhao, Q.; Xue, Y.; Shen, Q. Changes in the major aroma-active compounds and taste components of Jasmine rice during storage. Food Res. Int. 2020, 133, 109160. [Google Scholar] [CrossRef] [PubMed]
- Setyaningsih, W.; Majchrzak, T.; Dymerski, T.; Namieśnik, J.; Palma, M. Key-Marker Volatile Compounds in Aromatic Rice (Oryza sativa) Grains: An HS-SPME Extraction Method Combined with GC × GC-TOFMS. Molecules 2019, 24, 4180. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Pu, S.; Sun, Y.; Li, Z.; Niu, M.; Yan, X.; Xiao, X. Metabolomic profiling of autoimmune hepatitis: The diagnostic utility of nuclear magnetic resonance spectroscopy. J. Proteome Res. 2014, 13, 3792–3801. [Google Scholar] [CrossRef]
- Diez-Simon, C.; Mumm, R.; Hall, R.D. Mass spectrometry-based metabolomics of volatiles as a new tool for understanding aroma and flavor chemistry in processed food products. Metabolomics 2019, 15, 41. [Google Scholar] [CrossRef] [Green Version]
- Lim, D.K.; Mo, C.; Lee, D.-K.; Long, N.P.; Lim, J.; Kwon, S.W. Non-destructive profiling of volatile organic compounds using HS-SPME/GC–MS and its application for the geographical discrimination of white rice. J. Food Drug Anal. 2018, 26, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinge, V.R.; Patil, H.B.; Nadaf, A.B. Aroma volatile analyses and 2-AP characterization at various developmental stages in Basmati and non-Basmati scented rice (Oryza sativa L.) cultivars. Rice 2016, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Kays, S.J. Aroma-active compounds of wild rice (Zizania palustris L.). Food Res. Int. 2013, 54, 1463–1470. [Google Scholar] [CrossRef]
- Choi, S.; Seo, H.S.; Lee, K.R.; Lee, S.; Lee, J.; Lee, J. Effect of milling and longterm storage on volatiles of black rice (Oryza sativa L.) determined by headspace solid-phase microextraction with gas chromatography-mass spectrometry. Food Chem. 2019, 276, 572–582. [Google Scholar] [CrossRef]
- Bergman, C.J.; Delgado, J.T.; Bryant, R.; Grimm, C.; Cadwallader, K.R.; Webb, B.D. Rapid gas chromatographic technique for quantifying 2-acetyl-1-pyrroline and hexanal in rice (Oryza sativa, L.). Cereal Chem. 2000, 77, 454–458. [Google Scholar] [CrossRef]
- Paule, C.M.; Powers, J.J. Sensory and chemical examination of aromatic and nonaromatic rice. J. Food Sci. 2010, 54, 343–346. [Google Scholar] [CrossRef]
- Xiao, Z.; Lu, J.R. Strategies for enhancing fermentative production of acetoin: A review. Biotechnol. Adv. 2014, 32, 492–503. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, W.; Shen, J.; Li, S.; Liang, G.; Wang, X.; Ai, C. Soil quality assessment of acid sulfate paddy soils with different productivities in Guangdong Province, China. J. Integr. Agric. 2014, 13, 177–186. [Google Scholar] [CrossRef]
- López-Bucio, J.; Nieto-Jacobo, M.F.; Ramírez-Rodríguez, V.; Herrera-Estrella, L. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 2000, 160, 1–13. [Google Scholar] [CrossRef]
- Gold, B.; Leuschen, T.; Brunk, G.; Gingell, R. Metabolism of a DDT metabolite via a chloroepoxide. Chem. Biol. Interact. 1981, 35, 159–176. [Google Scholar] [CrossRef]
- Yang, S.; Zou, Y.; Liang, Y.; Xia, B.; Liu, S.; Ibrahim, M.; Zhu, J. Role of soil total nitrogen in aroma synthesis of traditional regional aromatic rice in China. Field Crop. Res. 2012, 125, 151–160. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, C.; Wang, Y.; Guo, F.; Peng, T. Geochronology and geochemistry of Permian basalts in western Guangxi Province, Southwest China: Evidence for plume-lithosphere interaction. Lithos 2008, 102, 218–236. [Google Scholar] [CrossRef]
- Lin, H.; Man, Z.X.; Kang, W.C.; Guan, B.B.; Chen, Q.S.; Xue, Z.L. A novel colorimetric sensor array based on boron-dipyrromethene dyes for monitoring the storage time of rice. Food Chem. 2018, 268, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ashraf, U.; Tian, H.; Mo, Z.; Pan, S.; Anjum, S.A.; Tang, X. Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice. Plant Physiol. Biochem. 2016, 103, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, K.B.; West, C.P.; Klein, D.; Subbiah, S.; Surowiec, K. Surowiec, Essential oil composition of ‘WW-B.Dahl’ old world bluestem (Bothriochloa bladhii) grown in the Texas High Plains. Ind. Crop. Prod. 2019, 133, 1–9. [Google Scholar] [CrossRef]
- Patrignani, F.; Iucci, L.; Belletti, N.; Gardini, F.; Guerzoni, M.E.; Lanciotti, R. Effects of sub-lethal concentrations of hexanal and 2-(E)-hexenal on membrane fatty acid composition and volatile compounds of Listeria monocytogenes, Staphylococcus aureus, Salmonella enteritidis and Escherichia coli. Int. J. Food Microbiol. 2008, 123, 1–8. [Google Scholar] [CrossRef]
- Ngo-Mback MN, L.; Famewo, E.B.; MubarakAli, D.; Eke, P.; Thajuddin, N.; Afolayan, A.J.; Fekam Boyom, F. An investigation of chemical composition and antimicrobial activity of essential oils extracted from Aeollanthus and Plectranthus species. Biocatal. Agric. Biotechnol. 2019, 22, 101412. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, H.; Jiang, Y.; Wang, J.; Khan, A.; Li, P.; Cao, C. Metabolomic analysis reveals metabolites and pathways involved in grain quality traits of high-quality rice cultivars under a dry cultivation system. Food Chem. 2020, 326, 126845. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.; Sui, J.; Zhang, J. Metabolomics reveals significant variations in metabolites and correlations regarding the maturation of walnuts (Juglans regia L.). Biol. Open 2016, 5, 829–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
RT [min] | Compounds | DAO | MEI | YE | HU | PU |
---|---|---|---|---|---|---|
Shared metabolites | ||||||
15.29 | 1-Hexanol | 1.72 × 108 | 96,048,970 | 1.13 × 108 | 24,102,107 | 45,055,543 |
3.78 | Fluoromethyloxirane | 36,614,040 | 23,305,508 | 44,202,528 | 28,416,649 | 1.45 × 108 |
12.37 | 1-Pentanol | 37,980,623 | 30,586,851 | 25,157,322 | 6,633,422 | 7,772,666 |
9.28 | 1-Butanol | 26,388,511 | 13,311,345 | 15,000,191 | 8,151,245 | 3,133,619 |
1.73 | Ethyl ether | 27,745,422 | 25,783,629 | 22,836,831 | 24,493,908 | 33,315,764 |
2.36 | Acetone | 18,903,094 | 14,901,508 | 10,460,835 | 7,760,489 | 5,174,855 |
7.15 | Hexanal | 16,299,306 | 27,805,740 | 24,085,922 | 5,099,126 | 7,709,785 |
17.83 | Acetic acid | 15,818,963 | 36,842,037 | 11238248 | 2,015,046 | 5,899,140 |
17.87 | 1-Octen-3-ol | 14,891,769 | 13,388,022 | 15,550,836 | 9,818,053 | 25,329,453 |
9.7 | 1-Penten-3-ol | 12,473,204 | 8,297,892 | 8,223,888 | 2,972,998 | 4,730,423 |
23.32 | 2-Pentylfuran | 12,281,335 | 9,644,697 | 11,429,015 | 3,493,209 | 5,800,664 |
18.03 | 1-Heptanol | 5,921,051 | 7,433,490 | 6,080,963 | 4,442,551 | 6,035,516 |
42.15 | Dibutyl phthalate | 4,606,760 | 3,567,330 | 1,983,646 | 1,391,658 | 3,006,027 |
27.4 | Hexanoic acid | 2,799,541 | 3,840,783 | 3,387,139 | 4,241,496 | 1,079,895 |
26.14 | 2,4-Dimethylbenzaldehyde | 4,469,583 | 8,813,779 | 10,020,634 | 3,439,346 | 3,472,676 |
10.21 | Decamethylcyclopentasiloxane, | 3,331,658 | 3,697,400 | 12,829,422 | 2,784,283 | 3,643,312 |
Dimethylsilanediol | ||||||
Important metabolites in Mei | ||||||
23.08 | 2,2-Dichloroethanol | 1,224,567 | 11,1523,95 | 1,224,567 | 36,892,075 | 42,942,869 |
21.63 | 3-Methylbutanoic acid | 63,498.64 | 4,545,779 | 16,655.63 | 69,413.39 | 33,309.38 |
23.52 | Pentanoic acid | 1,359,020 | 1,983,710 | 1,217,325 | 1,964,045 | 779,162.5 |
25.12 | Nonanal | 1,160,505 | 1,628,053 | 860,797.6 | 994,269.9 | 301,766.9 |
16.25 | 5-Ethenyldihydro-5-methyl-2(3H)-furanone | 822,909.4 | 2,818,383 | 2,225,003 | 534,010.8 | 619,826.6 |
Important metabolites in Hu | ||||||
22.96 | n-Butyl ether | 2,312,773 | 3,751,675 | 448,611 | 929,572.9 | 634,660.8 |
4.34 | Indole | 404,411.8 | 323,469.5 | 346,924.8 | 2,304,147 | 147,699.5 |
37.99 | 1,2,4,5-Tetramethylbenzene | 361,177.9 | 33,235.97 | 412,467.8 | 1,828,698 | 259,974.3 |
16.95 | (Z)-2-Hexen-1-ol | 1,300,407 | 1,031,014 | 1,357,945 | 2,231,575 | 1,244,037 |
Important metabolites in Pu | ||||||
16.67 | 3-Isopropoxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris(trimethylsiloxy)tetrasiloxane | 1,782,711 | 613,313.8 | 1,060,169 | 282,098.5 | 282,098.7 |
19.52 | 2,4,6-Trimethyldecane | 447,896.4 | 454,443.5 | 464,899.2 | 437,090.2 | 18,992,198 |
6.06 | 2,6-Dimethylnonane- | 207,859.7 | 344,146.2 | 287,853.3 | 286,306.8 | 3,265,933 |
17.62 | 2-Furanmethanol, 5-ethenyltetrahydro,5-trimethyl- | 2,878,806 | 1,420,566 | 824,133.5 | 1,205,407 | 2,184,705 |
16.42 | 3-Octanol | 1,906,009 | 798,094.8 | 1,202,779 | 759,883.7 | 1,993,274 |
27.74 | 2,2,4-Trimethyl-1,3-pentanediol diisobutyrate | 1,607,821 | 1,984,047 | 977,550.7 | 827,407.3 | 1,767,177 |
Important metabolites in Dao | ||||||
8.24 | 2-Butanone | 3,680,787 | 3,095,654 | 1,581,748 | 1,120,188 | 864,840.9 |
14.63 | 2-Acetyl-1-pyrroline | 3,452,700 | 133,350.6 | 265,893.5 | 48,794.77 | 48,795.2 |
21.49 | 1-Methylcycloheptanol | 3,180,146 | 1,081,452 | 1,261,950 | 638,954.6 | 1,807,368 |
Important metabolites in Aromatic rice | ||||||
13.1 | Acetoin | 88,606,134 | 24,735,894 | 3,040,508 | 2,235,303 | 882,512.3 |
10.16 | 2-Heptanone | 4,476,631 | 3,992,086 | 3,172,086 | 1,076,111 | 1,275,083 |
Differential Metabolites | RT [min] | p-Value | VIP |
---|---|---|---|
MEI vs. DAO | |||
Butyl benzoate | 27.34 | 2.51 × 10−9 | 4.71 |
2,2-Dichloroethanol | 21.64 | 1.79 × 10−11 | 4.57 |
Sulfurous acid dodecyl pentyl ester | 16.81 | 0.000306 | 3.57 |
2,6,7-Trimethyldecane | 6.03 | 0.088075 | 3.54 |
2-Acetyl-1-pyrroline | 14.64 | 1.66 × 10−9 | 3.46 |
1,3-Dichloro-2-methylbenzene | 19.75 | 3.05 × 10−7 | 3.22 |
(Z)-2-Octen-1-ol | 21.96 | 1.29 × 10−6 | 3.03 |
4,8-Dimethylundecane | 10.76 | 0.122349 | 3.02 |
2,4,6-Trimethylpyridine | 15.71 | 2.17 × 10−7 | 2.87 |
2-Bromocycloheptanone | 17.66 | 1.40 × 10−6 | 2.86 |
DL-2-Phenyl-1,2-propanediol | 25.13 | 2.44 × 10−7 | 2.69 |
2-(1-Cyclopent-1-enyl-1-methylethyl)cyclopentanone | 25.27 | 0.006072 | 2.61 |
2-(Octyloxy)ethanol- | 7.83 | 4.70 × 10−6 | 2.46 |
Indole | 37.99 | 0.000225 | 2.41 |
Borane-methyl sulfide complex | 2.04 | 2.04 × 10−6 | 2.34 |
Methyl isobutyl ketone | 5.19 | 0.001067 | 2.27 |
Tetramethylpyrazine | 18.45 | 0.195585 | 2.24 |
1,4-Diethoxybenzene | 28.53 | 1.73 × 10−5 | 2.19 |
6,6-Dimethylcyclohex-2-en-1-ol | 26.87 | 2.55 × 10−6 | 2.18 |
Succinic acid but-3-yn-2-yl 2-methylpent-3-yl ester | 15.49 | 3.62 × 10−6 | 2.12 |
3-Methylpyridine | 13.42 | 4.53 × 10−7 | 2.12 |
2-Ethylheptanoic acid | 26.99 | 0.00476 | 2.10 |
1-Ethyl-3-methylbenzene | 11.33 | 0.000117 | 2.08 |
1-(1H-Pyrrol-2-yl)-ethanone | 29.47 | 3.45 × 10−8 | 2.05 |
Dibutoxymethane | 11.28 | 2.11 × 10−5 | 2.03 |
3-Butene-1,2-diol | 8.35 | 1.59 × 10−6 | 2.03 |
Furfural | 17.95 | 8.58 × 10−5 | 2.02 |
3,8-Dihydroxy-3,4-dihydronaphthalen-1(2H)-one | 38.62 | 1.33 × 10−5 | 1.98 |
4-Methylhexyl isobutyrate | 9.18 | 6.59 × 10−6 | 1.97 |
MEI vs. HU | |||
(2-Methyloctyl)benzene | 6.37 | 0.003302 | 6.53 |
2,6,7-Trimethyldecane | 6.03 | 0.030641 | 5.37 |
2,2-Dichloroethanol | 21.64 | 9.68 × 10−5 | 4.44 |
2-Butyl-2-octenal | 23.12 | 5.16 × 10−6 | 4.15 |
Indole | 37.99 | 7.70 × 10−7 | 3.58 |
Tetramethylpyrazine | 18.45 | 0.017066 | 3.52 |
2-Isopropyl-5-methyl-9-methylenebicyclo[4.4.0]dec-1-ene | 21.43 | 0.056959 | 3.49 |
trans-Verbenyl caprate | 14.35 | 0.01666 | 3.31 |
Carbon monoxide | 2.25 | 0.023602 | 3.14 |
1,2-Dimethoxybenzene | 24.32 | 6.56 × 10−6 | 3.03 |
(1S-exo)-2-Methyl-3-methylene-2-(4-methyl-3-pentenyl)bicyclo[2.2.1]heptane | 22.69 | 1.43 × 10−5 | 2.99 |
1,3-Dimethoxybenzene | 24.80 | 2.90 × 10−8 | 2.76 |
Acetoin | 13.11 | 3.12 × 10−5 | 2.76 |
2,4,6-Trimethylpyridine | 15.71 | 2.17 × 10−7 | 2.40 |
(E)-2-Hexenal | 11.16 | 0.002133 | 2.28 |
1-Ethyl-3-methylbenzene | 11.33 | 5.30 × 10−5 | 2.26 |
1-Ethenylaziridine | 5.45 | 1.55 × 10−5 | 2.25 |
trans-2-(2-propynyloxy)cyclopentanol | 24.23 | 0.001288 | 2.16 |
6,10,14-Trimethyl-pentadecan-2-ol | 26.30 | 2.04 × 10−5 | 2.15 |
Acetic acid | 17.84 | 0.000139 | 2.00 |
Acetic acid butyl ester | 6.97 | 3.34 × 10−5 | 1.98 |
(Z)-2-Octen-1-ol, | 21.96 | 0.001148 | 1.97 |
3-Nonen-2-one | 19.32 | 0.044049 | 1.95 |
Pentanal | 4.54 | 0.00045 | 1.90 |
1-Ethyl-4-methylbenzene | 13.05 | 0.000112 | 1.87 |
Propanoic acid butyl ester | 8.96 | 5.78 × 10−5 | 1.87 |
5-Ethyl-2-decen-4-one | 23.50 | 0.000312 | 1.85 |
1-(3,3-Dimethyloxiranyl)ethanone | 13.61 | 0.004344 | 1.84 |
3-Methyl-6-ethyl-2,4-dioxadecane | 21.00 | 1.83 × 10−6 | 1.84 |
3-Methyl-2-butenal- | 10.58 | 1.01 × 10−5 | 1.84 |
Mei vs. PU | |||
(2-Methyloctyl)benzene | 6.37 | 3.01 × 10−8 | 6.83 |
2,6,7-Trimethyldecane | 6.03 | 0.048495 | 4.75 |
2,2-Dichloroethanol | 21.64 | 0.000132 | 3.81 |
1,2-Dimethoxybenzene | 24.32 | 5.19 × 10−9 | 3.79 |
2-Butyl-2-octenal | 23.12 | 1.36 × 10−7 | 3.69 |
Tetramethylpyrazine | 18.45 | 0.017066 | 3.35 |
2-Isopropyl-5-methyl-9-methylenebicyclo[4.4.0]dec-1-ene | 21.43 | 0.044206 | 3.31 |
1-Ethyl-5-methylcyclopentene | 4.59 | 1.84 × 10−6 | 3.14 |
4,8-Dimethylundecane | 10.76 | 0.092829 | 3.04 |
Dodecamethylcyclohexasiloxane | 15.17 | 1.00 × 10−9 | 3.01 |
3-Isopropoxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris(trimethylsiloxy)tetrasiloxane | 19.53 | 1.52 × 10−8 | 2.98 |
Acetoin | 13.11 | 2.78 × 10−6 | 2.86 |
Propanoic acid butyl ester | 8.96 | 0.000923 | 2.78 |
trans-2-(2-Propynyloxy)cyclopentanol | 24.23 | 0.000126 | 2.49 |
n-Butylbenzene- | 13.93 | 0.071259 | 2.45 |
2-Propenoic acid butyl ester | 10.00 | 0.000325 | 2.32 |
(Z)-2-Octen-1-ol | 21.96 | 6.04 × 10−6 | 2.28 |
1-Ethenylaziridine | 5.45 | 6.06 × 10−7 | 2.26 |
Acetic acid butyl ester | 6.97 | 1.03 × 10−8 | 2.22 |
3-Octen-2-one | 16.60 | 0.000309 | 2.22 |
5-Oxotetrahydrofuran-2-carboxylic acid | 21.35 | 0.00012 | 2.21 |
5-Ethyl-2-decen-4-one | 23.50 | 3.86 × 10−5 | 2.21 |
6,10,14-Trimethyl-pentadecan-2-ol | 26.30 | 1.48 × 10−5 | 2.14 |
5-Methyl-2-(1-methylethyl)-2-cyclohexen-1-one | 23.68 | 0.000157 | 2.13 |
3-Nonen-2-one | 19.32 | 0.036233 | 2.10 |
2-Ethyl-2-(hydroxymethyl)-1,3-propanediol | 14.11 | 1.26 × 10−8 | 2.09 |
2,5-Dimethyl-2,4-hexadiene | 5.92 | 1.18 × 10−5 | 2.03 |
Pentanoic acid | 25.13 | 0.000287 | 1.98 |
Pentanal | 4.54 | 3.83 × 10−5 | 1.97 |
2-Methyldecane | 7.90 | 0.03382 | 1.88 |
DAO vs. HU | |||
2-Isopropyl-5-methyl-9-methylenebicyclo[4.4.0]dec-1-ene | 21.43 | 0.021135 | 5.63 |
(1S-exo)-2-Methyl-3-methylene-2-(4-methyl-3-pentenyl)bicyclo[2.2.1]heptane | 22.69 | 1.76 × 10−6 | 4.87 |
Butyl benzoate | 27.34 | 5.09 × 10−6 | 4.46 |
2-Acetyl-1-pyrroline | 14.64 | 3.82 × 10−7 | 4.38 |
4,8-Dimethylundecane | 10.76 | 0.127631 | 3.90 |
trans-Verbenyl caprate | 14.35 | 0.016663 | 3.87 |
2-Butyl-2-octenal | 23.12 | 5.95 × 10−5 | 3.24 |
1,3-Dimethoxybenzene | 24.80 | 2.90 × 10−8 | 3.23 |
Dibutoxymethane | 11.28 | 3.72 × 10−8 | 3.06 |
1-Ethenylaziridine | 5.45 | 1.63 × 10−5 | 3.05 |
Carbon monoxide | 2.25 | 0.041224 | 3.05 |
Sulfurous acid dodecyl pentyl ester | 16.81 | 0.000566 | 3.03 |
(E)-2-Hexenal | 11.16 | 0.001103 | 3.02 |
DL-2-Phenyl-1,2-propanediol | 25.13 | 0.000277 | 3.02 |
1-(1H-Pyrrol-2-yl)ethanone | 29.47 | 1.36 × 10−6 | 2.97 |
2-Methyldecane | 7.90 | 0.005357 | 2.96 |
2-Bromocycloheptanone | 17.66 | 1.40 × 10−6 | 2.79 |
2,6,7-Trimethyldecane | 6.03 | 0.289158 | 2.79 |
2-Methylpropanoic acid 3-hydroxy-2,2,4-trimethylpentyl ester | 27.52 | 2.16 × 10−7 | 2.73 |
Acetoin | 13.11 | 0.005829 | 2.62 |
3-Nonen-2-one | 19.32 | 0.030047 | 2.58 |
Cyclopropanecarboxylic acid oct-3-en-2-yl ester | 13.71 | 0.01617 | 2.42 |
4-tert-Butoxystyrene | 37.17 | 3.46 × 10−7 | 2.32 |
2-Methyl-2-octen-4-ol | 26.50 | 2.27 × 10−5 | 2.29 |
Aniline | 11.27 | 7.85 × 10−7 | 2.29 |
2-Methylfuran, | 23.33 | 2.14 × 10−8 | 2.27 |
N-(1,1-Dimethylprop-2-ynyl)-acetamide | 18.00 | 0.000164 | 2.21 |
4-Ethyl-4H-1,2,4-triazole | 4.98 | 0.006118 | 2.16 |
3-Methyl-2-butenal | 10.58 | 6.18 × 10−6 | 2.13 |
1,3-Dichloro-2-methylbenzene | 19.75 | 9.93 × 10−10 | 2.08 |
DAO vs. PU | |||
4,8-Dimethylundecane | 10.76 | 0.00596 | 6.23 |
2-Isopropyl-5-methyl-9-methylenebicyclo[4.4.0]dec-1-ene | 21.43 | 0.015716 | 5.23 |
2-Acetyl-1-pyrroline | 14.64 | 3.82 × 10−7 | 4.09 |
Butyl benzoate | 27.34 | 4.87 × 10−5 | 4.08 |
3-Isopropoxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris(trimethylsiloxy)tetrasiloxane | 19.53 | 2.65 × 10−9 | 3.58 |
Dodecamethylcyclohexasiloxane | 15.17 | 1.24 × 10−10 | 3.46 |
1-Ethyl-5-methylcyclopentene | 4.59 | 2.14 × 10−7 | 3.16 |
Sulfurous acid dodecyl pentyl ester | 16.81 | 0.000194 | 3.16 |
1-Ethenylaziridine | 5.45 | 6.88 × 10−8 | 2.99 |
2-Methyldecane | 7.90 | 0.002899 | 2.97 |
1-(1H-pyrrol-2-yl)ethanone | 29.47 | 1.36 × 10−6 | 2.77 |
2-Butyl-2-octenal | 23.12 | 4.04 × 10−6 | 2.74 |
Acetoin | 13.11 | 0.003984 | 2.73 |
3-Nonen-2-one | 19.32 | 0.025678 | 2.71 |
1,3-Dichloro-2-methylbenzene | 19.75 | 7.24 × 10−5 | 2.65 |
1,2-Dimethoxybenzene | 24.32 | 5.15 × 10−7 | 2.63 |
2-Bromocycloheptanone | 17.66 | 1.40 × 10−6 | 2.61 |
2-Methylfuran | 23.33 | 1.03 × 10−9 | 2.56 |
2,4,6-Trimethyldecane | 6.06 | 1.34 × 10−9 | 2.52 |
5-Methyl-2-(1-methylethyl)-2-Cyclohexen-1-one | 23.68 | 2.08 × 10−5 | 2.51 |
1-Butanol | 9.29 | 4.94 × 10−8 | 2.42 |
2-Ethyl-2-(hydroxymethyl)-1,3-propanediol | 14.11 | 1.56 × 10−5 | 2.40 |
2,5-Dimethyl-2,4-hexadiene | 5.92 | 1.88 × 10−6 | 2.40 |
2-(1-Cyclopent-1-enyl-1-methylethyl)cyclopentanone | 25.27 | 0.006072 | 2.39 |
4-(5-Methyl-2-furanyl)-2-butanone | 23.44 | 3.10 × 10−5 | 2.34 |
3,3-Dimethylcyclohexanol | 19.28 | 0.000241 | 2.33 |
n-Butylbenzene | 13.93 | 0.129919 | 2.28 |
(E)-2-Hexenal | 11.16 | 0.006958 | 2.24 |
5-Ethyl-2-decen-4-one | 23.50 | 3.04 × 10−5 | 2.22 |
2-Propenoic acid butyl ester | 10.00 | 0.000258 | 2.19 |
YE vs. DAO | |||
Butyl benzoate | 27.34 | 2.51 × 10−9 | 5.92 |
(1S-exo)-2-Methyl-3-methylene-2-(4-methyl-3-pentenyl)bicyclo[2.2.1]heptane | 22.69 | 2.61 × 10−7 | 4.76 |
DL-2-Phenyl-1,2-propanediol | 25.13 | 4.35 × 10−5 | 4.24 |
2-Acetyl-1-pyrroline | 14.64 | 0.003009 | 4.14 |
1,3-Dichloro-2-methylbenzene | 19.75 | 3.05 × 10−7 | 4.05 |
Sulfurous acid dodecyl pentyl ester | 16.81 | 0.000667 | 3.70 |
2-Butyl-2-octenal | 23.12 | 0.002661 | 3.55 |
2-Methyldecane | 7.90 | 0.006932 | 3.36 |
2-(1-Cyclopent-1-enyl-1-methylethyl)cyclopentanone | 25.27 | 0.006072 | 3.28 |
Dimethysilanediol, | 23.08 | 0.053691 | 2.99 |
Propanoic acid, 2-methyl-, 3-hydroxy-2,2,4-trimethylpentyl ester | 27.52 | 4.85 × 10−7 | 2.95 |
Aziridine, 1-ethenyl- | 5.45 | 0.000476 | 2.95 |
2-Octen-4-ol, 2-methyl- | 26.50 | 2.27 × 10−5 | 2.94 |
Undecane, 4,8-dimethyl- | 10.76 | 0.22725 | 2.82 |
6,6-Dimethyl-cyclohex-2-en-1-ol | 26.87 | 4.96 × 10−5 | 2.55 |
3-Nonen-2-one | 19.32 | 0.017839 | 2.55 |
2-Bromocycloheptanone | 17.66 | 0.000474 | 2.55 |
2-Methyl-2-propenoic acid 4-formyl-2-methoxyphenyl ester | 13.88 | 6.99 × 10−7 | 2.54 |
4-Ethyl-4H-1,2,4-triazole | 4.98 | 1.12 × 10−6 | 2.51 |
3,8-Dihydroxy-3,4-dihydronaphthalen-1(2H)-one | 38.62 | 1.33 × 10−5 | 2.49 |
1-(1H-Pyrrol-2-yl)ethanone | 29.47 | 2.00 × 10−7 | 2.43 |
2-Cyclohexylpiperidine | 23.57 | 0.000698 | 2.40 |
4,8-Dimethylnona-3,8-dien-2-one | 22.76 | 6.88 × 10−6 | 2.34 |
4-tert-Butoxystyrene | 37.17 | 0.000971 | 2.31 |
Methyl 8,11,14,17-eicosatetraenoate | 24.46 | 0.005069 | 2.26 |
N-(1,1-Dimethyl-prop-2-ynyl)-acetamide | 18.00 | 0.025511 | 2.22 |
Butanal | 2.88 | 0.016879 | 2.21 |
(2-Methyloctyl)benzene | 6.37 | 0.372951 | 2.21 |
1-sec-Butyl-3-nitro-4-amino-1,2,5-triazole 2-oxide | 13.53 | 0.038085 | 2.20 |
Benzaldehyde | 19.44 | 0.000244 | 2.09 |
YE vs. HU | |||
2-Isopropyl-5-methyl-9-methylenebicyclo[4.4.0]dec-1-ene | 21.43 | 0.04846 | 5.67 |
trans-Verbenyl caprate | 14.35 | 0.021689 | 4.56 |
2,6,7-Trimethyldecane | 6.03 | 0.253466 | 4.02 |
Dibutoxymethane | 11.28 | 2.49 × 10−5 | 3.84 |
1,3-Dimethoxybenzene | 24.80 | 0.000178 | 3.79 |
(E)-2-Hexenal | 11.16 | 0.002022 | 3.51 |
1,2-Dimethoxybenzene | 24.32 | 8.75 × 10−7 | 3.25 |
1,5-Dimethyl-2-oxabicyclo[3.2.1]nonan-7-one | 13.91 | 7.20 × 10−7 | 3.07 |
4-Chlorophenol | 37.88 | 7.32 × 10−7 | 2.85 |
Hentriacontane | 18.05 | 0.002675 | 2.84 |
n-Butylbenzene | 13.93 | 0.022446 | 2.76 |
6-Methylhept-4-en-1-yl 2-methylbutanoate | 15.88 | 0.000103 | 2.74 |
2-Propenoic acid butyl ester | 10.00 | 1.54 × 10−5 | 2.70 |
Acetic acid butyl ester | 6.97 | 7.49 × 10−6 | 2.68 |
5-Chloroguaiacol | 33.81 | 0.000571 | 2.64 |
Carbon monoxide | 2.25 | 0.234365 | 2.60 |
2-Ethyl-2-(hydroxymethyl)-1,3-propanediol | 14.11 | 0.000948 | 2.53 |
2-Ethylfuran | 4.03 | 7.34 × 10−6 | 2.50 |
n-Butyl ether | 4.35 | 3.31 × 10−6 | 2.44 |
Furan, 2-methyl- | 23.33 | 3.64 × 10−7 | 2.43 |
1-Ethyl-4-methylbenzene | 13.05 | 7.33 × 10−6 | 2.43 |
3-Butylpyridine-1-oxide | 20.20 | 3.01 × 10−7 | 2.36 |
4,8-Dimethylundecane | 10.76 | 0.522126 | 2.35 |
(E)-4-Oxohex-2-enal | 24.96 | 0.000801 | 2.33 |
Methyl 8,11,14,17-eicosatetraenoate | 24.46 | 0.005068 | 2.32 |
(R)-(−)-2-Pentanol | 8.62 | 0.01173 | 2.29 |
1-(3,3-Dimethyloxiranyl)ethanone | 13.61 | 0.010545 | 2.23 |
N,N,2,2-Tetramethyl-1,3-propanediamine | 1.86 | 0.07517 | 2.19 |
4-Methylundecane | 9.39 | 0.010168 | 2.18 |
cis-2-(2-Pentenyl)furan | 13.68 | 2.03 × 10−6 | 2.17 |
YE vs. MEI | |||
(2-Methyloctyl)benzene | 6.37 | 0.01419 | 8.07 |
2,2-Dichloroethanol | 21.64 | 8.96 × 10−11 | 5.78 |
2-Butyl-2-Octenal | 23.12 | 0.000407 | 4.95 |
Indole | 37.99 | 4.57 × 10−5 | 4.25 |
2,6,7-Trimethyldecane | 6.03 | 0.104491 | 3.76 |
Tetramethylpyrazine | 18.45 | 0.087738 | 3.46 |
trans-2-(2-Propynyloxy)cyclopentanol | 24.23 | 6.94 × 10−5 | 3.38 |
2,4,6-Trimethylpyridine | 15.71 | 2.17 × 10−7 | 3.17 |
2(3H)-Furanone, 5-ethenyldihydro-5-methyl- | 22.96 | 1.18 × 10−8 | 2.66 |
(1S-exo)-2-Methyl-3-methylene-2-(4-methyl-3-pentenyl)bicyclo[2.2.1]heptane | 22.69 | 0.000391 | 2.64 |
2-(Octyloxy)ethanol | 7.83 | 1.18 × 10−5 | 2.56 |
2-Propylthiophene | 16.71 | 0.003933 | 2.49 |
3,5,5-Trimethyl 2(5H)-furanone | 20.85 | 1.26 × 10−6 | 2.42 |
Nonanoic acid ethyl ester | 20.03 | 0.111112 | 2.39 |
2-Methyl-2-octen-4-ol | 26.50 | 4.19 × 10−5 | 2.36 |
Succinic acid but-3-yn-2-yl 2-methylpent-3-yl ester | 15.49 | 3.62 × 10−6 | 2.35 |
2-Ethylheptanoic acid | 26.99 | 0.003497 | 2.34 |
N,N-2,2-Tetramethyl-1,3-propanediamine | 1.86 | 0.028851 | 2.30 |
Acetoin | 13.11 | 0.000493 | 2.27 |
3-Cyano-3-methyl-4-oxopentanamide | 29.50 | 1.21 × 10−5 | 2.24 |
3-Butene-1,2-diol | 8.35 | 6.70 × 10−6 | 2.22 |
1-Ethenylaziridine | 5.45 | 0.000907 | 2.13 |
(S)- N,N-2-Trimethyl-2-[(2,2,3-trimethyl-1-pyrrolidinyl)oxy]-1-propanamine | 24.34 | 3.86 × 10−6 | 2.12 |
1-Ethyl-5-methylcyclopentene | 4.59 | 1.95 × 10−7 | 2.09 |
10-Methylnonadecane | 8.20 | 5.06 × 10−9 | 2.08 |
Dibutoxymethane | 11.28 | 2.33 × 10−5 | 2.08 |
1-(2-Furanyl)1-propanone | 7.74 | 0.016649 | 2.07 |
2-Cyclohexylpiperidine | 23.57 | 0.000879 | 2.04 |
(Z)-2-Octen-1-ol, | 21.96 | 0.020305 | 2.02 |
Butanoic acid butyl ester | 11.32 | 0.003751 | 2.02 |
YE vs. PU | |||
4,8-Dimethylundecane | 10.76 | 0.055871 | 4.87 |
2-Isopropyl-5-methyl-9-methylenebicyclo[4.4.0]dec-1-ene | 21.43 | 0.037269 | 4.63 |
Dodecamethylcyclohexasiloxane | 15.17 | 2.01 × 10−9 | 4.23 |
3-Isopropoxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris(trimethylsiloxy)tetrasiloxane | 19.53 | 1.55 × 10−9 | 4.09 |
(1S-exo)-2-methyl-3-methylene-2-(4-methyl-3-pentenyl)bicyclo[2.2.1]heptane | 22.69 | 2.61 × 10−7 | 4.00 |
1,2-Dimethoxybenzene- | 24.32 | 6.97 × 10−6 | 3.86 |
2-Propenoic acid butyl ester | 10.00 | 0.000127 | 3.26 |
n-Butylbenzene | 13.93 | 0.071271 | 3.25 |
3-Butylpyridine-1-oxide | 20.20 | 1.06 × 10−8 | 3.11 |
3,3-Dimethylcyclohexanol | 19.28 | 2.22 × 10−8 | 3.06 |
2,6,7-Trimethyldecane | 6.03 | 0.352155 | 2.85 |
Propanoic acid butyl ester | 8.96 | 0.001745 | 2.81 |
2,4,6-Trimethyldecane | 6.06 | 7.58 × 10−8 | 2.76 |
2-Ethyl-2-(hydroxymethyl)-1,3-propanediol | 14.11 | 2.72 × 10−6 | 2.69 |
Indole | 37.99 | 0.000491 | 2.66 |
Acetic acid butyl ester | 6.97 | 1.66 × 10−5 | 2.64 |
DL-2-Phenyl-1,2-propanediol | 25.13 | 3.78 × 10−5 | 2.64 |
Dimethylsilanediol | 23.08 | 0.047035 | 2.62 |
1-sec-Butyl-3-nitro-4-amino-1,2,5-triazole 2-oxide | 13.53 | 0.017105 | 2.58 |
2-Methylfuran | 23.33 | 2.20 × 10−9 | 2.50 |
3-Octen-2-one | 16.60 | 0.001749 | 2.48 |
Decanoic acid ethyl ester | 22.49 | 0.016237 | 2.42 |
5-Methyl-2-(1-methylethyl)-2-cyclohexen-1-one | 23.68 | 0.000895 | 2.37 |
N-(3,5-dihydroxyphenyl)acetamide, | 30.19 | 0.000652 | 2.37 |
2,6-Dimethylnonane | 5.40 | 6.76 × 10−5 | 2.28 |
Hentriacontane | 18.05 | 0.01257 | 2.28 |
6-Methyl-3-heptanone | 12.33 | 0.00116 | 2.22 |
Hexadecamethylcyclooctasiloxane | 23.48 | 1.49 × 10−6 | 2.21 |
5-Ethyl-2-decen-4-one | 23.50 | 0.000115 | 2.21 |
(E)-2-Hexenal | 11.16 | 0.013029 | 2.19 |
Different Metabolites | RT [min] | DAO | MEI | YE | HU | PU |
---|---|---|---|---|---|---|
trans-Verbenyl caprate | 14.35 | 808.04 | 808.21 | 2880.04 | 808.47 | 808.536 |
1,3-Dimethoxybenzene | 24.79 | 10,925.11 | 10,925.54 | 10,925.39 | 228,638 | 10,925.27 |
(E)-2-Hexenal | 11.16 | 1,082,045 | 455,636.2 | 776,304.4 | 28,205.43 | 28,205.94 |
2-Isopropyl-5-methyl-9-methylenebicyclo[4.4.0]dec-1-ene | 21.42 | 222,991.9 | 53,964.66 | 75,151.33 | 37,707.41 | 38,170.74 |
Dodecamethylcyclohexasiloxane | 15.16 | 3,377,694 | 2,973,434 | 2,735,523 | 2,927,507 | 1.2 × 108 |
1-Ethyl-5-methylcyclopentene | 4.59 | 561,031.6 | 717,270.5 | 107,995 | 126,177.6 | 15,334.66 |
1,2-Dimethoxybenzene | 24.32 | 14,742.91 | 2068.13 | 9001.32 | 62,189.44 | 179,016.1 |
5-Methyl-2-(1-methylethyl)-2-cyclohexen-1-one, | 23.67 | 9476.75 | 9477.015 | 25,774.79 | 42,351.68 | 139,730.8 |
2-Ethyl-2-(hydroxymethyl)-1,3-propanediol | 14.1 | 883,789.3 | 712,170 | 723,473.1 | 64,951.88 | 64,952.48 |
5-Ethyl-2-decen-4-one | 23.49 | 193,215.2 | 213,350.9 | 129,560.4 | 33,279.31 | 15,463.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jie, Y.; Shi, T.; Zhang, Z.; Yan, Q. Identification of Key Volatiles Differentiating Aromatic Rice Cultivars Using an Untargeted Metabolomics Approach. Metabolites 2021, 11, 528. https://doi.org/10.3390/metabo11080528
Jie Y, Shi T, Zhang Z, Yan Q. Identification of Key Volatiles Differentiating Aromatic Rice Cultivars Using an Untargeted Metabolomics Approach. Metabolites. 2021; 11(8):528. https://doi.org/10.3390/metabo11080528
Chicago/Turabian StyleJie, Yu, Tianyu Shi, Zhongjei Zhang, and Qiaojuan Yan. 2021. "Identification of Key Volatiles Differentiating Aromatic Rice Cultivars Using an Untargeted Metabolomics Approach" Metabolites 11, no. 8: 528. https://doi.org/10.3390/metabo11080528
APA StyleJie, Y., Shi, T., Zhang, Z., & Yan, Q. (2021). Identification of Key Volatiles Differentiating Aromatic Rice Cultivars Using an Untargeted Metabolomics Approach. Metabolites, 11(8), 528. https://doi.org/10.3390/metabo11080528