Low Levels of Few Micronutrients May Impact COVID-19 Disease Progression: An Observational Study on the First Wave
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Patients
2.2. Micronutrients Levels
2.3. Association between Low Micronutrient Levels and Clinical Variables
2.4. Association between Inflammatory Parameters and Clinical Variables
2.5. Association between Variables and Mortality
3. Discussion
Limitations
4. Materials and Methods
4.1. Design/Participants
4.2. Materials
4.3. Data Source and Variables
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, A.; Bertrand, J.; Ke, R.; Comets, E.; de Lamballerie, X.; Malvy, D.; Pizzorno, A.; Terrier, O.; Calatrava, M.R.; Mentré, F.; et al. Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral load. CPT: Pharmacometrics Syst. Pharmacol. 2020, 9, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Arabi, Y.M.; Gordon, A.C.; Derde, L.P.G.; Nichol, A.D.; Murthy, S.; Al Beidh, F.; Annane, D.; Al Swaidan, L.; Beane, A.; Beasley, R.; et al. Lopinavir-ritonavir and hydroxychloroquine for critically ill patients with COVID-19: REMAP-CAP randomized controlled trial. Intensive Care Med. 2021, 47, 867–886. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Huang, Z.; Xiao, Y.; Huang, X.; Fan, X.-G. Protecting Chinese healthcare workers while combating the 2019 novel coronavirus. Infect. Control Hosp. Epidemiol. 2020, 41, 745–746. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Baylink, D.J.; Chen, C.-S.; Reeves, M.E.; Xiao, J.; Lacy, C.; Lau, E.; Cao, H. The importance of vitamin d metabolism as a potential prophylactic, immunoregulatory and neuroprotective treatment for COVID-19. J. Transl. Med. 2020, 18, 322. [Google Scholar] [CrossRef]
- Jovic, T.H.; Ali, S.R.; Ibrahim, N.; Jessop, Z.M.; Tarassoli, S.P.; Dobbs, T.D.; Holford, P.; Thornton, C.A.; Whitaker, I.S. Could Vitamins Help in the Fight Against COVID-19? Nutrients 2020, 12, 2550. [Google Scholar] [CrossRef]
- Fiorino, S.; Gallo, C.; Zippi, M.; Sabbatani, S.; Manfredi, R.; Moretti, R.; Fogacci, E.; Maggioli, C.; Loffredo, F.T.; Giampieri, E.; et al. Cytokine storm in aged people with CoV-2: Possible role of vitamins as therapy or preventive strategy. Aging Clin. Exp. Res. 2020, 32, 2115–2131. [Google Scholar] [CrossRef]
- Beigmohammadi, M.T.; Bitarafan, S.; Hoseindokht, A.; Abdollahi, A.; Amoozadeh, L.; Abadi, M.M.A.; Foroumandi, M. Impact of vitamins A, B, C, D, and E supplementation on improvement and mortality rate in ICU patients with Coronavirus-19: A structured summary of a study protocol for a randomized controlled trial. Trials 2020, 21, 614. [Google Scholar] [CrossRef]
- Berry, D.J.; Hesketh, K.; Power, C.; Hypönen, E. Vitamin D status has a linear association with seasonal infections and lung function in British adults. Br. J. Nutr. 2011, 106, 1433–1440. [Google Scholar] [CrossRef] [Green Version]
- Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ 2017, 356, i6583. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.D.; Lin, C.H.; Lei, W.T.; Chang, H.Y.; Lee, H.C.; Yeung, C.Y.; Chiu, N.C.; Chi, H.; Liu, J.M.; Hsu, R.J.; et al. Does Vitamin D Deficiency Affect the Immunogenic Responses to Influenza Vaccination? A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suarca, K.S.H.; Arhana, B.; Suandi, I.K. The Role of Zinc Supplementation in Humoral Immune Response to Hepatitis B Vaccination in Infants: A Double-Blind Randomized Placebo-Controlled Trial. Available online: https://paediatricaindonesiana.org/index.php/paediatrica-indonesiana/article/view/632 (accessed on 21 August 2021).
- Karlsen, T.H.; Sommerfelt, H.; Klomstad, S.; Andersen, P.K.; Strand, T.A.; Ulvik, R.J.; Åhrén, C.; Grewal, H.M.S. Intestinal and Systemic Immune Responses to an Oral Cholera Toxoid B Subunit Whole-Cell Vaccine Administered during Zinc Supplementation. Infect. Immun. 2003, 71, 3909–3913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Te Velthuis, A.J.W.; van den Worml, S.H.E.; Sims, A.C.; Baric, R.S.; Snijder, E.J.; van Hemert, M.J. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010, 6, e1001176. [Google Scholar] [CrossRef] [PubMed]
- Merzon, E.; Tworowski, D.; Gorohovski, A.; Vinker, S.; Cohen, A.G.; Green, I.; Frenkel-Morgenstern, M. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: An Israeli population-based study. FEBS J. 2020, 287, 3693–3702. [Google Scholar] [CrossRef]
- Yisak, H.; Ewunetei, A.; Kefale, B.; Mamuye, M.; Teshome, F.; Ambaw, B.; Yideg Yitbarek, G. Effects of Vitamin D on COVID-19 Infection and Prognosis: A Systematic Review. Risk Manag. Healthc. Policy 2021, 14, 31–38. [Google Scholar] [CrossRef]
- Jothimani, D.; Kailasam, E.; Danielraj, S.; Nallathambi, B.; Ramachandran, H.; Sekar, P.; Manoharan, S.; Ramani, V.; Narasimhan, G.; Kaliamoorthy, I.; et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int. J. Infect. Dis. 2020, 100, 343–349. [Google Scholar] [CrossRef]
- Yasui, Y.; Yasui, H.; Suzuki, K.; Saitou, T.; Yamamoto, Y.; Ishizaka, T.; Nishida, K.; Yoshihara, S.; Gohma, I.; Ogawa, Y. Analysis of the predictive factors for a critical illness of COVID-19 during treatment—Relationship between serum zinc level and critical illness of COVID-19. Int. J. Infect. Dis. 2020, 100, 230–236. [Google Scholar] [CrossRef]
- Moghaddam, A.; Heller, R.; Sun, Q.; Seelig, J.; Cherkezov, A.; Seibert, L.; Hackler, J.; Seemann, P.; Diegmann, J.; Pilz, M.; et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients 2020, 12, 2098. [Google Scholar] [CrossRef] [PubMed]
- Annweiler, G.; Corvaisier, M.; Gautier, J.; Dubée, V.; Legrand, E.; Sacco, G.; Annweiler, C. Vitamin D Supplementation Associated to Better Survival in Hospitalized Frail Elderly COVID-19 Patients: The GERIA-COVID Quasi-Experimental Study. Nutrients 2020, 12, 3377. [Google Scholar] [CrossRef]
- Ling, S.F.; Broad, E.; Murphy, R.; Pappachan, J.M.; Pardesi-Newton, S.; Kong, M.-F.; Jude, E.B. High-Dose Cholecalciferol Booster Therapy is Associated with a Reduced Risk of Mortality in Patients with COVID-19: A Cross-Sectional Multi-Centre Observational Study. Nutrients 2020, 12, 3799. [Google Scholar] [CrossRef]
- Carlucci, P.M.; Ahuja, T.; Petrilli, C.; Rajagopalan, H.; Jones, S.; Rahimian, J. Zinc sulfate in combination with a zinc ionophore may improve outcomes in hospitalized COVID-19 patients. J. Med. Microbiol. 2020, 69, 1228–1234. [Google Scholar] [CrossRef]
- Galmés, S.; Serra, F.; Palou, A. Current state of evidence: Influence of nutritional and nutrigenetic factors on immunity in the COVID-19 pandemic framework. Nutrients 2020, 12, 2738. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, K.; Chen, L.; Liao, X.; Deng, L.; Chen, S.; Ji, Y. Vitamin A deficiency in critically ill children with sepsis. Crit. Care 2019, 23, 267. [Google Scholar] [CrossRef] [Green Version]
- Casaer, M.P.; Bellomo, R. Micronutrient deficiency in critical illness: An invisible foe? Intensive Care Med. 2019, 45, 1136–1139. [Google Scholar] [CrossRef] [Green Version]
- De Pascale, G.; Vallecoccia, M.; Schiattarella, A.; Di Gravio, V.; Cutuli, S.; Bello, G.; Montini, L.; Pennisi, M.; Spanu, T.; Zuppi, C.; et al. Clinical and microbiological outcome in septic patients with extremely low 25-hydroxyvitamin D levels at initiation of critical care. Clin. Microbiol. Infect. 2016, 22, 456.e7–456.e13. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Rosengrave, P.C.; Bayer, S.; Chambers, S.; Mehrtens, J.; Shaw, G.M. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit. Care 2017, 21, 300. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Wu, K.; Li, Y.; Liang, X.; Tse, K.F.W.; Yang, L.; Lai, K.P. Revealing the targets and mechanisms of vitamin A in the treatment of COVID-19. Aging 2020, 12, 15784–15796. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.I.; Jeong, J.; Lee, C.W. Association between EGFR mutation and ageing, history of pneumonia and gastroesophageal reflux disease among patients with advanced lung cancer. Eur. J. Cancer 2019, 122, 101–108. [Google Scholar] [CrossRef]
- Amrein, K.; Oudemans-van Straaten, H.M.; Berger, M.M. Vitamin therapy in critically ill patients: Focus on thiamine, vitamin C, and vitamin D. Intensive Care Med. 2018, 44, 1940–1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, A.C. A new clinical trial to test high-dose vitamin C in patients with COVID-19. Crit. Care 2020, 24, 133. [Google Scholar] [CrossRef] [Green Version]
- De Melo, A.F.; Homem-de-Mello, M. High-dose intravenous vitamin C may help in cytokine storm in severe SARS-CoV-2 infection. Crit. Care 2020, 24, 500. [Google Scholar] [CrossRef]
- Castillo, M.E.; Costa, L.M.E.; Barrios, J.M.V.; Díaz, J.F.A.; Miranda, J.L.; Bouillon, R.; Gomez, J.M.Q. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study. J. Steroid Biochem. Mol. Biol. 2020, 203, 105751. [Google Scholar] [CrossRef]
- The RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with COVID-19—Preliminary report. N. Engl. J. Med. 2020, 384, 693–704. [Google Scholar] [CrossRef]
- The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Domingo, P.; Mur, I.; Mateo, G.M.; Gutierrez, M.D.M.; Pomar, V.; de Benito, N.; Corbacho, N.; Herrera, S.; Millan, L.; et al. Association between Administration of IL-6 Antagonists and Mortality among Patients Hospitalized for COVID-19: A Meta-analysis. JAMA 2021, 326, e2111330. [Google Scholar] [CrossRef]
- Duncan, A.; Talwar, D.; McMillan, D.; Stefanowicz, F.; O’Reilly, D.S.J. Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements. Am. J. Clin. Nutr. 2011, 95, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, T.J.M.; Gonçalves, S.E.A.B.; Guarnieri, A.; Risegato, R.C.; Guimarães, M.P.; de Freitas, D.C.; Razuk-Filho, A.; Junior, P.B.B.; Parrillo, E.F. Association Between Low Zinc Levels and Severity of Acute Respiratory Distress Syndrome by New Coronavirus SARS-CoV-2. Nutr. Clin. Pract. 2021, 36, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Tepasse, P.-R.; Vollenberg, R.; Fobker, M.; Kabar, I.; Schmidt, H.; Meier, J.; Nowacki, T.; Hüsing-Kabar, A. Vitamin A Plasma Levels in COVID-19 Patients: A Prospective Multicenter Study and Hypothesis. Nutrients 2021, 13, 2173. [Google Scholar] [CrossRef] [PubMed]
- Murai, I.H.; Fernandes, A.L.; Sales, L.P.; Pinto, A.J.; Goessler, K.F.; Duran, C.S.C.; Silva, C.B.R.; Franco, A.S.; Macedo, M.B.; Dalmolin, H.H.H.; et al. Effect of a Single High Dose of Vitamin D3 on Hospital Length of Stay in Patients with Moderate to Severe COVID-19. JAMA 2021, 325, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Patel, D.; Bittel, B.; Wolski, K.; Wang, Q.; Kumar, A.; Il’Giovine, Z.J.; Mehra, R.; McWilliams, C.; Nissen, S.E.; et al. Effect of High-Dose Zinc and Ascorbic Acid Supplementation vs Usual Care on Symptom Length and Reduction Among Ambulatory Patients With SARS-CoV-2 Infection. JAMA Netw. Open 2021, 4, e210369. [Google Scholar] [CrossRef] [PubMed]
- Force, A.D.T.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute Respiratory Distress Syndrome. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
Characteristic | Results |
---|---|
Age (years), Mean (SD) | 58.74 (13.9) |
Female | 43 (35.8) |
Male | 77 (64.2) |
Weight (kg), Mean (SD) | 89.4 (32.8) |
Heigh (cm), Mean (SD) | 162.3 (23) |
BMI (kg/m2), Mean (SD) | 29.7 (12) |
Headache, Cases, n (%) | 43 (35.8) |
Anosmia/Ageusia, Cases, n (%) | 7 (5.8) |
Myalgia, Cases, n (%) | 33 (27.5) |
Diarrhoea, Cases, n (%) | 35 (29.2) |
Fever, Cases, n (%) | 103 (85.8) |
Cough, Cases, n (%) | 77 (64.1) |
Dyspnoea, Cases, n (%) | 81 (67.5) |
Chest pain, Cases, n (%) | 24 (20) |
Smoker, Cases, n (%) | 9 (7.5) |
Alcoholism, Cases, n (%) | 6 (5) |
Mellitus diabetes, Cases, n (%) | 20 (16.7) |
Arterial hypertension, Cases, n (%) | 39 (32.5) |
Chronic obstructive pulmonary disease, Cases, n (%) | 6 (5) |
Asthma, Cases, n (%) | 15 (12.5) |
Obesity, Cases, n (%) | 46 (38.3) |
Sleep apnoea-hypopnea syndrome, Cases, n (%) | 12 (10) |
Dyslipidaemia, Cases, n (%) | 47 (39.2) |
Ischemic heart disease, Cases, n (%) | 22 (18.3) |
Heart failure, Cases, n (%) | 2 (1.7) |
Hydroxychloroquine, Cases, n (%) | 63 (52.5) |
Chloroquine, Cases, n (%) | 23 (19.2) |
Darunavir, Cases, n (%) | 19 (15.8) |
Lopinavir/Ritonavir, Cases, n (%) | 50 (41.7) |
Remdesivir, Cases, n (%) | 1 (0.8) |
Interferon, Cases, n (%) | 33 (27.5) |
Tocilizumab, Cases, n (%) | 20 (16.7) |
Steroids, Cases, n (%) | 36 (30) |
Ceftriaxone, Cases, n (%) | 61 (51) |
Azithromycin, Cases, n (%) | 27 (22.5) |
Flu vaccinated, Cases, n (%) | 39 (32.5) |
SDRA criteria: | |
Mild ARDS [PaO(2)/FiO2 ratio = 200–300] | 0 |
Moderate ARDS [PaO(2)/FiO2 ratio = 100–200] | 39 (32.5%) |
Severe ARDS [PaO(2)/FiO2 ratio < 100] | 81 (67.5%) |
ICU procedures: | |
Invasive mechanical ventilation | 42 (84) |
Non-invasive mechanical ventilation | 1 (2) |
High-flow oxygen therapy | 23 (46) |
Prone position | 26 (52) |
Tracheostomy | 16 (32) |
Extracorporeal membrane oxygenation | 2 (4) |
Length of stay: | |
LOS of all patients admitted to the hospital, Mean (SD) | 19.8 (17.3) |
LOS of patients not admitted to the ICU, Mean (SD) | 12.9 (8.3) |
LOS of patients admitted to the ICU, Mean (SD) | 18 (13.5) |
Total LOS of patients admitted to the ICU, Mean (SD) | 29.7 (21.4) |
Total hospital deaths | 27 (22.5) |
VIT.A (mg/L) | VIT. B6 (ng/mL) | VIT.C (mcg/dL) | VIT.D (ng/mL) | VIT.E (mg/L) | ZINC (µg/dL) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Laboratory reference values | Normal [0.3–0.6] | Low [<0.3] | Normal [3.6–18] | Low [<3.6] | Normal [0.4–2] | Low [<0.4] | Normal [20–150] | Low [<20] | Normal [5–18] | Low [<5] | Normal [84–159] | Low [<84] |
Number of patients 1, n (%) | 34 (28.3) | 86 (71.7) | 69 (57.5) | 51 (42.5) | 0 | 55 (100) | 27 (25.7) | 78 (74.3) | 113 (94.2) | 7 (5.8) | 31 (25.8) | 89 (74.2) |
Sex (male), n (%) | 13 (44.8) | 60 * (69) | 43 (68.3) | 30 (57.7) | 5 (71.4) | 36 (75) | 40 (57.1) | 25 (71.4) | 71 (62.8) | 6 (85.7) | 19 (61.3) | 58 (65.2) |
Age (years), mean (SD) | 57.8 (13.4) | 63 (13.3) | 60.1 (14) | 63.6 (12.9) | 58.6 (7.3) | 59.1 (12.1) | 63.1 (13.7) | 59.7 (13.7) | 61.5 (13.3) | 61.3 (16) | 56.5 (13) | 63.2 * (13.2) |
Mortality, n (%) | 5 (17.2) | 25 (29.4) | 10 (16.1) | 17 (33.3) | 2 (28.6) | 15 (31.9) | 7 (28) | 11 (31.4) | 28 (25.7) | 2 (28.6) | 5 (16.1) | 26 (29.9) |
ICU, n (%) admission | 6 (20.7) | 54 * (62.1) | 38 (60.3) | 22 (42.3) | 7 (100) | 48 (100) | 15 (55.6) | 18 (51.4) | 58 (52.3) | 5 (71.4) | 9 (29) | 55 * (61.8) |
NAD, n (%) | 3 (7.1) | 39 * (92.9) | 26 (56.5) | 16 (34.8) | 6 (15%) | 34 (85%) | 9 (25%) | 17 (47.2) | 41 (89.1) | 4 (8.7) | 5 (10.9) | 41 * (89.1) |
DBT, n (%) | 1 (16.7) | 5 (83.3) | 3 (42.9) | 3 (42.9) | 1 (16.7) | 5 (83.3) | 1 (25) | 3 (75) | 6 (85.7) | 1 (14.3) | 0 | 7 (100) |
DVT, n (%) | 1 (12.5) | 7 (87.5) | 5 (55.6) | 3 (33.3) | 3 (60) | 2 (40) | 2 (25) | 4 (50) | 8 (88.9) | 1 (11.1) | 2 (22.2) | 7 (77.8) |
PE, n (%) | 0 | 4 (100) | 1 (25) | 2 (50) | 1 (33.3) | 2 (66.7) | 1 (50) | 1 (50) | 3 (75) | 1 (25) | 1 (25) | 3 (75) |
HF, n (%) | 1 (20%) | 4 (80) | 2 (40) | 2 (40) | 1 (20) | 4 (80) | 0 | 2 (100) | 4 (80) | 1 (20) | 1 (20) | 4 (80) |
AKI, n (%) | 5 (17.2) | 24 (82.8) | 19 (61.3) | 9 (29) | 4 (18.2) | 18 (81.8) | 6 (22.2) | 11 (40.7) | 28 (90.3) | 2 (6.5) | 6 (19.4) | 25 (80.6) |
ID, n (%) | 0 | 3 (100) | 2 (50) | 2 (50) | 1 (50) | 1 (50) | 0 | 3 * (100) | 4 (100) | 0 | 0 | 4 (100) |
CRRT, n (%) | 0 | 4 (100) | 1 (25) | 1 (25) | 1 (33.3) | 2 (66.7) | 0 | 2 (100) | 3 (75) | 1 (25) | 0 | 4 (100) |
OTI, n (%) | 4 (7.7) | 48 * (92.3) | 34 (60.7) | 18 (32.1) | 7 (14.3) | 42 (85.7) | 11 (26.2) | 17 (40.5) | 51 (91.1) | 4 (7.1) | 7 (12.5) | 49 * (87.5) |
PP, n (%) | 3 (6.4) | 44 * (93.6) | 29 (58) | 18 (36) | 7 (17.5) | 33 (82.5) | 12 (28.6) | 17 (40.5) | 45 (90) | 4 (8) | 7 (14) | 43 * (86) |
BRS, n (%) | 2 (7.4) | 25 * (92.6) | 18 (60) | 11 (36.7) | 4 (17.4) | 19 (82.6) | 5 (23.8) | 8 (38.1) | 29 (96.7) | 1 (3.3) | 3 (10) | 27 * (90) |
PREALBUMIN mg/dL | CRP mg/L | D-DIMER ng/mL | IL-6 pg/mL | FERRITIN ng/mL | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Laboratory reference values | Normal [20–40] | Low [<20] | Normal [0–5] | High [>5] | Normal [0–500] | High [>500] | Normal [0–6.4] | High [>6.4] | Normal [30–400] | High [>400] |
Number of Patients 1, n (%) | 9 (7.6) | 110 (92.4) | 0 | 119 (100) | 16 (14.5) | 94 (85.5) | 5 (4.6) | 104 (95.4) | 22 (22.7) | 75 (77.3) |
Sex (male), n (%) | 8 (80) | 68 (62.4) | 0 | 76 (63.9) | 13 (81.39) | 58 (61.7) | 1 (20) | 68 * (65.4) | 8 (36.4) | 56 * (74.7) |
Age (years old) | 55.1 (6.9) | 62.1 * (13.8) | 0 | 62.1 (13.8) | 63.4 (15.4) | 60.6 (12.8) | 56.6 (7) | 61.2 (13.7) | 13.3 (17.1) | 61.2 (12.1) |
Low Vitamin A levels, n (%) | 0 | 86 * (80.4) | 0 | 86 (74.8) | 13 (81.3) | 68 (74.7) | 0 | 78* (78) | 12 (54.5) | 58 * (80.6) |
Low Vitamin B6 levels, n (%) | 4 (40) | 48 (46.2) | 0 | 52 (45.2) | 9 (56.3) | 40 (44.4) | 2 (40) | 46 (46) | 11 (52.4) | 35 (47.9) |
Low Vitamin C levels, n (%) | 6 (100) | 42 (85.7) | 0 | 47 (87) | 3 (75) | 41 (87.2) | 2 (100) | 42 ( 85.4) | 2 (100) | 34 (82.9) |
Low Vitamin D levels, n (%) | 4 (40) | 31 (33) | 0 | 35 (33.3) | 4 (30.8) | 28 (33.7) | 2 (40) | 30 (32.6) | 7 (31.8) | 22 (34.4) |
Low Vitamin E levels, n (%) | 0 | 7 (6.4) | 0 | 7 (5.9) | 1 (6.3) | 6 (6.4) | 0 | 7 (6.7) | 0 | 7 (9.3) |
Low Zinc levels, n (%) | 6 (60) | 83 (76.1) | 0 | 89 (74.8) | 10 (62.5) | 71 (75.5) | 3 (60) | 78 (75) | 14 (63.6) | 58 (77.3) |
Mortality, n (%) | 1 (11.1) | 30 (28) | 0 | 30 (25.6) | 3 (18.8) | 24 (26.1) | 0 | 26 (25.5) | 6 (27.3) | 19 (25.7) |
ICU Admission n (%) | 5 (55.6) | 57 (52.3) | 0 | 63 (52.9) | 4 (25) | 56 * (59.6) | 2 (40) | 57 (54.8) | 2 (9.1) | 47 * (62.7) |
NAD, n (%) | 2 (4.4) | 42 (93.3) | 0 | 45 (100) | 3 (7) | 40 (93) | 0 | 41 (100) | 1 (2.8) | 35 * (97.2) |
DBT, n (%) | 0 | 6 (85.7) | 0 | 7 (100) | 0 | 5 (100) | 0 | 5 (100) | 1 (16.7) | 5 (83.3) |
DVT, n (%) | 0 | 9 (100) | 0 | 9 (100) | 0 | 9 (100) | 0 | 9 (100) | 0 | 8 (100) |
PE, n (%) | 0 | 4 (100) | 0 | 4 (100) | 0 | 4 (100) | 0 | 3 (100) | 0 | 4 (100) |
HF, n (%) | 0 | 5 (100) | 0 | 5 (100) | 0 | 4 (100) | 0 | 3 (100) | 1 (20) | 4 (80) |
AKI, n (%) | 2 (6.7) | 27 (90) | 0 | 31 (100) | 4 (15.4) | 22 (84.6) | 1 (3.8) | 25 (96.2) | 2 (8) | 23* (92) |
ID, n (%) | 0 | 4 (100) | 0 | 4 (100) | 0 | 4 (100) | 0 | 3 (100) | 0 | 4 (100) |
CRRT, (%) | 0 | 4 (100) | 0 | 4 (100) | 0 | 4 (100) | 0 | 3 (100) | 0 | 4 (100) |
OTI, n (%) | 3 (5.5) | 51 (92.7) | 0 | 55 (100) | 4 (7.5) | 49 * (92.5) | 1 (2) | 50 (98) | 1 (2.2) | 44 * (97.8) |
PP, n (%) | 3 (6.1) | 45 (91.8) | 0 | 50 (100) | 4 (8.3) | 44 (91.7) | 0 | 48 * (100) | 3 (7.1) | 39 * (92.9) |
BRS, n (%) | 2 (6.9) | 26 (89.7) | 0 | 30 (100) | 4 (14.3) | 24 (85.7) | 1 (3.7) | 26 (96.3) | 1 (4.3) | 22 * (95.7) |
Outcome | Factor | Beta | OR(CI95%) | p |
---|---|---|---|---|
ICU | Sex (Men) | 1.027 | 2.79 (1.29–6.04) | 0.009 |
Age | −0.025 | 0.98 (0.95–1.00) | 0.076 | |
Vit A (<0.3 mg/L) | 1.836 | 6.27 (2.31–17.01) | 0.000 | |
Vit B6 (<3.6 ng/mL) | −0.729 | 0.48 (0.23–1.02) | 0.056 | |
Vit C (<0.4 mcg/mL) | --- | NV | ||
Vit D (<20 ng/mL) | −0.229 | 1.26 (0.56–2.83) | 0.581 | |
Vit E (<5 mg/L) | −0.828 | 2.29 (0.43–12.29) | 0.334 | |
Zinc (<84 mcg/L) | 1.375 | 3.95 (1.63–9.59) | 0.002 | |
OTI | Sex (Men) | 1.237 | 3.44 (1.54–7.70) | 0.003 |
Age | −0.008 | 0.99 (0.97–1.02) | 0.575 | |
Vit A (<0.3 mg/L) | 2.040 | 7.69 (2.47–23.98) | 0.000 | |
Vit B6 (<3.6 ng/mL) | −0.795 | 0.45 (0.21–0.96) | 0.039 | |
Vit C (<0.4 mcg/mL) | --- | NV | ||
Vit D (<20 ng/mL) | −0.531 | 1.70 (0.75–3.87) | 0.207 | |
Vit E (<5 mg/L) | −0.447 | 1.56 (0.33–7.31) | 0.570 | |
Zinc (<84 mcg/L) | 1.435 | 4.20 (1.64–10.75) | 0.003 |
Outcome | ||||
---|---|---|---|---|
UCI | Saturated Model | Beta | OR(CI95%) | p |
Sex (man) | 0.695 | 2.00 (0.80–5.04) | 0.140 | |
Age | −0.050 | 0.95 (0.92–0.99) | 0.009 | |
Vit A (<0.3 mg/L) | 1.830 | 6.23 (1.82–21.39) | 0.004 | |
Vit B6 (<3.6 ng/mL) | −0.570 | 0.57 (0.24–1.34) | 0.196 | |
Zinc (<84 mcg/L) | 1.248 | 3.48 (1.09–11.11) | 0.035 | |
Constant | ||||
Final Model | Beta | OR(CI95%) | p | |
Sex (man) | 0.901 | 2.46 (1.00–6.04) | 0.049 | |
Age | −0.051 | 0.95 (0.92–0.98) | 0.005 | |
Vit A (<0.3 mg/L) | 1.661 | 5.26 (1.68–16.46) | 0.004 | |
Zinc (<84 mcg/L) | 1.346 | 3.84 (1.27–11.65) | 0.017 | |
Constant | ||||
OTI | Saturated Model | Beta | OR(CI95%) | p |
Sex (man) | 0.886 | 2.42 (0.96–6.13) | 0.061 | |
Age | −0.020 | 0.98 (0.95–1.01) | 0.243 | |
Vit A (<0.3 mg/L) | 1.900 | 6.68 (1.70–26.25) | 0.006 | |
Vit B6 (<3.6 ng/mL) | −0.654 | 0.52 (0.22–1.24) | 0.139 | |
Zinc (<84 mcg/L) | 1.149 | 3.16 (0.96–10.33) | 0.058 | |
Constant | ||||
Final Model | Beta | OR(CI95%) | p | |
Sex (man) | 0.943 | 2.57 (1.09–6.06) | 0.031 | |
Vit A (<0.3 mg/L) | 1.897 | 6.66 (2.10–21.15) | 0.001 | |
Constant |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomasa-Irriguible, T.-M.; Bielsa-Berrocal, L.; Bordejé-Laguna, L.; Tural-Llàcher, C.; Barallat, J.; Manresa-Domínguez, J.-M.; Torán-Monserrat, P. Low Levels of Few Micronutrients May Impact COVID-19 Disease Progression: An Observational Study on the First Wave. Metabolites 2021, 11, 565. https://doi.org/10.3390/metabo11090565
Tomasa-Irriguible T-M, Bielsa-Berrocal L, Bordejé-Laguna L, Tural-Llàcher C, Barallat J, Manresa-Domínguez J-M, Torán-Monserrat P. Low Levels of Few Micronutrients May Impact COVID-19 Disease Progression: An Observational Study on the First Wave. Metabolites. 2021; 11(9):565. https://doi.org/10.3390/metabo11090565
Chicago/Turabian StyleTomasa-Irriguible, Teresa-Maria, Lara Bielsa-Berrocal, Luisa Bordejé-Laguna, Cristina Tural-Llàcher, Jaume Barallat, Josep-Maria Manresa-Domínguez, and Pere Torán-Monserrat. 2021. "Low Levels of Few Micronutrients May Impact COVID-19 Disease Progression: An Observational Study on the First Wave" Metabolites 11, no. 9: 565. https://doi.org/10.3390/metabo11090565
APA StyleTomasa-Irriguible, T. -M., Bielsa-Berrocal, L., Bordejé-Laguna, L., Tural-Llàcher, C., Barallat, J., Manresa-Domínguez, J. -M., & Torán-Monserrat, P. (2021). Low Levels of Few Micronutrients May Impact COVID-19 Disease Progression: An Observational Study on the First Wave. Metabolites, 11(9), 565. https://doi.org/10.3390/metabo11090565