Metabolomics Signature of Plasma Renin Activity and Linkage with Blood Pressure Response to Beta Blockers and Thiazide Diuretics in Hypertensive European American Patients
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Data Processing and Quality Control on PEAR-2 Metabolomics Data
2.3. Untargeted Metabolomics Analysis
2.4. Replication of Top Signals
2.5. BP Response Validation
2.6. Modulated Modularity Clustering
2.7. Pathway Enrichment Analysis of Validated and Clustered Metabolites
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. BP Phenotype
4.3. PRA Determination
4.4. Untargeted Metabolomics Profiling
4.5. Data Processing and QC on PEAR-2 Metabolomics Data
4.6. Statistical Analyses
4.6.1. Step 1: Untargeted Metabolomics Analysis
4.6.2. Step 2: Replication of Top Signal(s)
4.6.3. Step 3: BP Response Validation
4.6.4. Step 4: MMC
4.6.5. Step 5: Pathway Enrichment Analysis of Validated and Clustered Metabolites
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef]
- Rapsomaniki, E.; Timmis, A.; George, J.; Pujades-Rodriguez, M.; Shah, A.D.; Denaxas, S.; White, I.R.; Caulfield, M.J.; Deanfield, J.E.; Smeeth, L.; et al. Blood pressure and incidence of twelve cardiovascular diseases: Lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people. Lancet 2014, 383, 1899–1911. [Google Scholar] [CrossRef] [Green Version]
- Mann, S.J. Drug therapy for resistant hypertension: Simplifying the approach. J. Clin. Hypertens. Greenwich 2011, 13, 120–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Materson, B.J. Variability in response to antihypertensive drugs. Am. J. Med. 2007, 120, S10–S20. [Google Scholar] [CrossRef] [PubMed]
- Laragh, J. Laragh’s lessons in pathophysiology and clinical pearls for treating hypertension. Am. J. Hypertens. 2001, 14, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Laragh, J. Laragh’s lessons in pathophysiology and clinical pearls for treating hypertension. Am. J. Hypertens. 2001, 14, 491–503. [Google Scholar] [CrossRef] [Green Version]
- Mehanna, M.; Chen, Y.E.; Gong, Y.; Handberg, E.; Roth, B.; De Leon, J.; Smith, S.M.; Harrell, J.G.; Cooper-DeHoff, R.M. Optimizing Precision of Hypertension Care to Maximize Blood Pressure Control (OPTI-BP): A Pilot Study Utilizing a Smartphone App to Incorporate Plasma Renin Activity Testing. Clin. Transl. Sci. 2020, 14, 617–624. [Google Scholar] [CrossRef]
- Egan, B.M.; Basile, J.N.; Rehman, S.U.; Davis, P.B.; Grob, C.H.; Riehle, J.F.; Walters, C.A.; Lackland, D.T.; Merali, C.; Sealey, J.E.; et al. Plasma Renin test-guided drug treatment algorithm for correcting patients with treated but uncontrolled hypertension: A randomized controlled trial. Am. J. Hypertens. 2009, 22, 792–801. [Google Scholar] [CrossRef] [Green Version]
- Gharaibeh, K.A.; Turner, S.T.; Hamadah, A.M.; Chapman, A.B.; Cooper-Dehoff, R.M.; Johnson, J.A.; Gums, J.G.; Bailey, K.R.; Schwartz, G.L. Comparison of Blood Pressure Control Rates Among Recommended Drug Selection Strategies for Initial Therapy of Hypertension. Am. J. Hypertens. 2016, 29, 1186–1194. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, G.L.; Bailey, K.; Chapman, A.B.; Boerwinkle, E.; Turner, S.T. The role of plasma renin activity, age, and race in selecting effective initial drug therapy for hypertension. Am. J. Hypertens. 2013, 26, 957–964. [Google Scholar] [CrossRef] [Green Version]
- Mehanna, M.; Wang, Z.; Gong, Y.; McDonough, C.W.; Beitelshees, A.L.; Gums, J.G.; Chapman, A.B.; Schwartz, G.L.; Bailey, K.R.; Johnson, J.A.; et al. Plasma Renin Activity Is a Predictive Biomarker of Blood Pressure Response in European but not in African Americans with Uncomplicated Hypertension. Am. J. Hypertens. 2019, 32, 668–675. [Google Scholar] [CrossRef]
- Canzanello, V.J.; Baranco-Pryor, E.; Rahbari-Oskoui, F.; Schwartz, G.L.; Boerwinkle, E.; Turner, S.T.; Chapman, A.B. Predictors of blood pressure response to the angiotensin receptor blocker candesartan in essential hypertension. Am. J. Hypertens. 2008, 21, 61–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evangelou, E.; Warren, H.R.; Mosen-Ansorena, D.; Mifsud, B.; Pazoki, R.; Gao, H.; Ntritsos, G.; Dimou, N.; Cabrera, C.P.; Karaman, I.; et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 2018, 50, 1412–1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonough, C.W.; Magvanjav, O.; Sá, A.C.C.; El Rouby, N.M.; Dave, C.; Deitchman, A.N.; Kawaguchi-Suzuki, M.; Mei, W.; Shen, Y.; Singh, R.S.P.; et al. Genetic Variants Influencing Plasma Renin Activity in Hypertensive Patients from the PEAR Study (Pharmacogenomic Evaluation of Antihypertensive Responses). Circ. Genom. Precis. Med. 2018, 11, e001854. [Google Scholar] [CrossRef] [Green Version]
- Patti, G.J.; Yanes, O.; Siuzdak, G. Innovation: Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012, 13, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Jia, W.; Hu, Z. Emerging Applications of Metabolomics in Clinical Pharmacology. Clin. Pharmacol. Ther. 2019, 106, 544–556. [Google Scholar] [CrossRef]
- Everett, J.R.; Holmes, E.; Veselkov, K.A.; Lindon, J.C.; Nicholson, J.K. A Unified Conceptual Framework for Metabolic Phenotyping in Diagnosis and Prognosis. Trends Pharmacol. Sci. 2019, 40, 763–773. [Google Scholar] [CrossRef]
- Clish, C.B. Metabolomics: An emerging but powerful tool for precision medicine. Cold Spring Harb. Mol. Case Stud. 2015, 1, a000588. [Google Scholar] [CrossRef] [Green Version]
- Ameta, K.; Gupta, A.; Kumar, S.; Sethi, R.; Kumar, D.; Mahdi, A.A. Essential hypertension: A filtered serum based metabolomics study. Sci. Rep. 2017, 7, 2153. [Google Scholar] [CrossRef] [Green Version]
- He, W.J.; Li, C.; Mi, X.; Shi, M.; Gu, X.; Bazzano, L.A.; Razavi, A.C.; Nierenberg, J.L.; Dorans, K.; He, H.; et al. An untargeted metabolomics study of blood pressure: Findings from the Bogalusa Heart Study. J. Hypertens. 2020, 38, 1302–1311. [Google Scholar] [CrossRef]
- Brocker, C.N.; Velenosi, T.; Flaten, H.K.; McWilliams, G.; McDaniel, K.; Shelton, S.K.; Saben, J.; Krausz, K.W.; Gonzalez, F.J.; Monte, A.A. Metabolomic profiling of metoprolol hypertension treatment reveals altered gut microbiota-derived urinary metabolites. Hum. Genom. 2020, 14, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotroff, D.M.; Shahin, M.H.; Gurley, S.B.; Zhu, H.; Motsinger-Reif, A.; Meisner, M.; Beitelshees, A.L.; Fiehn, O.; Johnson, J.A.; Elbadawi-Sidhu, M.; et al. Pharmacometabolomic Assessments of Atenolol and Hydrochlorothiazide Treatment Reveal Novel Drug Response Phenotypes. CPT Pharmacomet. Syst. Pharmacol. 2015, 4, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Wikoff, W.R.; Frye, R.F.; Zhu, H.; Gong, Y.; Boyle, S.; Churchill, E.; Cooper-Dehoff, R.M.; Beitelshees, A.L.; Chapman, A.B.; Fiehn, O.; et al. Pharmacometabolomics reveals racial differences in response to atenolol treatment. PLoS ONE 2013, 8, e57639. [Google Scholar] [CrossRef] [Green Version]
- Shahin, M.H.; Gong, Y.; McDonough, C.W.; Rotroff, D.M.; Beitelshees, A.L.; Garrett, T.J.; Gums, J.G.; Motsinger-Reif, A.; Chapman, A.B.; Turner, S.T.; et al. A Genetic Response Score for Hydrochlorothiazide Use: Insights from Genomics and Metabolomics Integration. Hypertension 2016, 68, 621–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahin, M.H.; Gong, Y.; Frye, R.F.; Rotroff, D.M.; Beitelshees, A.L.; Baillie, R.A.; Chapman, A.B.; Gums, J.G.; Turner, S.T.; Boerwinkle, E.; et al. Sphingolipid Metabolic Pathway Impacts Thiazide Diuretics Blood Pressure Response: Insights from Genomics, Metabolomics, and Lipidomics. J. Am. Heart Assoc. 2017, 7, e006656. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Gleeson, J.P.; Frías, J.M.; Ryan, S.M.; Brayden, D.J. Sodium caprate enables the blood pressure-lowering effect of Ile-Pro-Pro and Leu-Lys-Pro in spontaneously hypertensive rats by indirectly overcoming PepT1 inhibition. Eur. J. Pharm. Biopharm. 2018, 128, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Stenvinkel, P.; Diczfalusy, U.; Lindholm, B.; Heimbürger, O. Phospholipid plasmalogen, a surrogate marker of oxidative stress, is associated with increased cardiovascular mortality in patients on renal replacement therapy. Nephrol. Dial. Transplant. 2004, 19, 972–976. [Google Scholar] [CrossRef] [Green Version]
- Cantalupo, A.; Di Lorenzo, A. S1P Signaling and De Novo Biosynthesis in Blood Pressure Homeostasis. J. Pharmacol. Exp. Ther. 2016, 358, 359–370. [Google Scholar] [CrossRef] [Green Version]
- Bischoff, A.; Czyborra, P.; Meyer Zu Heringdorf, D.; Jakobs, K.H.; Michel, M.C. Sphingosine-1-phosphate reduces rat renal and mesenteric blood flow in vivo in a pertussis toxin-sensitive manner. Br. J. Pharmacol. 2000, 130, 1878–1883. [Google Scholar] [CrossRef] [Green Version]
- Guan, Z.; Singletary, S.T.; Cook, A.K.; Hobbs, J.L.; Pollock, J.S.; Inscho, E.W. Sphingosine-1-phosphate evokes unique segment-specific vasoconstriction of the renal microvasculature. J. Am. Soc. Nephrol. 2014, 25, 1774–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolz, S.S.; Vogel, L.; Sollinger, D.; Derwand, R.; Boer, C.; Pitson, S.M.; Spiegel, S.; Pohl, U. Sphingosine kinase modulates microvascular tone and myogenic responses through activation of RhoA/Rho kinase. Circulation 2003, 108, 342–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Zhu, S.; Liu, D.; Cao, T.; Wang, L.; Tepel, M. Thiazide-like diuretics attenuate agonist-induced vasoconstriction by calcium desensitization linked to Rho kinase. Hypertension 2005, 45, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Duarte, J.D.; Cooper-DeHoff, R.M. Mechanisms for blood pressure lowering and metabolic effects of thiazide and thiazide-like diuretics. Expert Rev. Cardiovasc. Ther. 2010, 8, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Fyrst, H.; Saba, J.D. An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat. Chem. Biol. 2010, 6, 489–497. [Google Scholar] [CrossRef]
- Ke, C.; Zhu, X.; Zhang, Y.; Shen, Y. Metabolomic characterization of hypertension and dyslipidemia. Metabolomics 2018, 14, 117. [Google Scholar] [CrossRef]
- Dietrich, S.; Floegel, A.; Weikert, C.; Prehn, C.; Adamski, J.; Pischon, T.; Boeing, H.; Drogan, D. Identification of Serum Metabolites Associated with Incident Hypertension in the European Prospective Investigation into Cancer and Nutrition-Potsdam Study. Hypertension 2016, 68, 471–477. [Google Scholar] [CrossRef]
- Wawrzyniak, R.; Mpanga, A.Y.; Struck-Lewicka, W.; Kordalewska, M.; Polonis, K.; Patejko, M.; Mironiuk, M.; Szyndler, A.; Chrostowska, M.; Hoffmann, M.; et al. Untargeted Metabolomics Provides Insight into the Mechanisms Underlying Resistant Hypertension. Curr. Med. Chem. 2019, 26, 232–243. [Google Scholar] [CrossRef]
- Marino, A.; Sakamoto, T.; Robador, P.A.; Tomita, K.; Levi, R. S1P receptor 1-Mediated Anti-Renin-Angiotensin System Cardioprotection: Pivotal Role of Mast Cell Aldehyde Dehydrogenase Type 2. J. Pharmacol. Exp. Ther. 2017, 362, 230–242. [Google Scholar] [CrossRef]
- Calò, L.A.; Pessina, A.C. RhoA/Rho-kinase pathway: Much more than just a modulation of vascular tone. Evidence from studies in humans. J. Hypertens. 2007, 25, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, H.; Meikle, P.J.; Mamtani, M.; Weir, J.M.; Barlow, C.K.; Jowett, J.B.; Bellis, C.; Dyer, T.D.; Johnson, M.P.; Rainwater, D.L.; et al. Plasma lipidomic profile signature of hypertension in Mexican American families: Specific role of diacylglycerols. Hypertension 2013, 62, 621–626. [Google Scholar] [CrossRef]
- Zheng, Z.J.; Folsom, A.R.; Ma, J.; Arnett, D.K.; McGovern, P.G.; Eckfeldt, J.H. Plasma fatty acid composition and 6-year incidence of hypertension in middle-aged adults: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Epidemiol. 1999, 150, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension global hypertension practice guidelines. J. Hypertens. 2020, 38, 982–1004. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.J.; Stafford, R.S. Current Trends of Hypertension Treatment in the United States. Am. J. Hypertens. 2017, 30, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Mehanna, M.; Gong, Y.; McDonough, C.W.; Beitelshees, A.L.; Gums, J.G.; Chapman, A.B.; Schwartz, G.L.; Johnson, J.A.; Turner, S.T.; Cooper-DeHoff, R.M. Blood pressure response to metoprolol and chlorthalidone in European and African Americans with hypertension. J. Clin. Hypertens. Greenwich 2017, 19, 1301–1308. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.A.; Boerwinkle, E.; Zineh, I.; Chapman, A.B.; Bailey, K.; Cooper-DeHoff, R.M.; Gums, J.; Curry, R.W.; Gong, Y.; Beitelshees, A.L.; et al. Pharmacogenomics of antihypertensive drugs: Rationale and design of the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) study. Am. Heart J. 2009, 157, 442–449. [Google Scholar] [CrossRef] [Green Version]
- Powers, B.J.; Olsen, M.K.; Smith, V.A.; Woolson, R.F.; Bosworth, H.B.; Oddone, E.Z. Measuring blood pressure for decision making and quality reporting: Where and how many measures? Ann. Intern. Med. 2011, 154, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Laragh, J.H.; Sealey, J.E. The plasma renin test reveals the contribution of body sodium-volume content (V) and renin-angiotensin (R) vasoconstriction to long-term blood pressure. Am. J. Hypertens. 2011, 24, 1164–1180. [Google Scholar] [CrossRef] [Green Version]
- Sealey, J.E. Plasma renin activity and plasma prorenin assays. Clin. Chem. 1991, 37, 1811–1819. [Google Scholar] [CrossRef]
- Evans, A.M.; Bridgewater, B.R.; Liu, Q.; Mitchell, M.W.; Robinson, R.J.; Dai, H.; Stewart, S.J.; DeHaven, C.D.; Miller, L.A.D. High Resolution Mass Spectrometry Improves Data Quantity and Quality as Compared to Unit Mass Resolution Mass Spectrometry in High- Throughput Profiling Metabolomics. Metabolomics 2014, 4, 1. [Google Scholar]
- Afgan, E.; Baker, D.; Batut, B.; van den Beek, M.; Bouvier, D.; Cech, M.; Chilton, J.; Clements, D.; Coraor, N.; Grüning, B.A.; et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018, 46, W537–W544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Stone, E.A.; Ayroles, J.F. Modulated modularity clustering as an exploratory tool for functional genomic inference. PLoS Genet. 2009, 5, e1000479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Baseline Characteristics | ||||
---|---|---|---|---|
Variable | PEAR-2 | PEAR | ||
Metoprolol (n = 198) | Chlorthalidone (n = 181) | Atenolol (n = 233) | HCTZ (n = 230) | |
Age, years | 51.1 ± 9 | 51.1 ± 8.9 | 49.6 ± 9.5 | 50 ± 9.4 |
Females, N (%) | 89 (45%) | 77 (42.5%) | 109 (46.8%) | 93 (40.4%) |
BMI, kg/m2 | 30.8 ± 5.1 | 30.6 ± 5 | 30.3 ± 5.6 | 30.3 ± 4.9 |
Baseline PRA, ng/mL/h | 0.91 (0.49–1.77) | 0.85 (0.55–1.46) | 0.9 (0.46–1.52) | 0.87 (0.46–1.43) |
Baseline SBP, mmHg | 150 ± 12.2 | 151.2 ± 13.2 | 151.1 ± 12.4 | 151.8 ± 12.5 |
Baseline DBP, mmHg | 97.8 ± 5.2 | 98.9 ± 5.5 | 97.9 ± 5.7 | 98.1 ± 5.8 |
Post-treatment BP | ||||
Post-treatment SBP, mmHg | 136.8 ± 15.4 | 136 ± 12.7 | 135.7 ± 14.6 | 140.8 ± 13.5 |
Post-treatment DBP, mmHg | 86.7 ± 8.3 | 90.3 ± 8.2 | 85.9 ± 8.9 | 93.1 ± 8.3 |
SBP response *, mmHg | −13.2 ± 13.7 | −15.3 ± 13.9 | −15.4 ± 14.7 | −11 ± 12.8 |
DBP response *, mmHg | −11.1 ± 8.2 | −8.6 ± 8.3 | −12 ± 9 | −5 ± 7.2 |
Metabolite Name | Classification | Pathway | HMBD | Estimate ± SE | p-Value | FDR |
---|---|---|---|---|---|---|
Sphinganine-1-phosphate | Lipid | Sphingolipid Metabolism | HMDB01383 | 0.21 ± 0.05 | 4.45 × 10−5 | 0.01 |
Sphingomyelin (d18:1/20:1, d18:2/20:0) | Lipid | Sphingolipid Metabolism | unknown | 0.09 ± 0.02 | 0.00012 | 0.026 |
Sphingosine-1-phosphate | Lipid | Sphingolipid Metabolism | HMDB00277 | 0.24 ± 0.06 | 0.0002 | 0.033 |
Sphinganine | Lipid | Sphingolipid Metabolism | HMDB00269 | 0.09 ± 0.03 | 0.0007 | 0.042 |
Caprate (10:0) | Lipid | Medium Chain Fatty Acid | HMDB00511 | 0.04 ± 0.01 | 0.0005 | 0.042 |
N-acetylglutamate | Amino Acid | Glutamate Metabolism | HMDB01138 | 0.26 ± 0.07 | 0.00018 | 0.03 |
Beta-hydroxyisovalerate | Amino Acid | Leucine, Isoleucine and Valine Metabolism | HMDB00754 | 0.14 ± 0.04 | 0.0007 | 0.042 |
Threonine | Amino Acid | Glycine, Serine and Threonine Metabolism | HMDB00167 | 0.11 ± 0.03 | 0.0008 | 0.045 |
Fumarate | Energy Metabolite | TCA Cycle | HMDB00134 | 0.22 ± 0.06 | 0.0007 | 0.042 |
3-Hydroxybutyroylglycine | Lipid | Fatty Acid Metabolism | NA | 0.21 ± 0.05 | 1.57 × 10−5 | 0.007 |
3-Hydroxystachydrine | Unknown | Unknown | NA | 0.1 ± 0.03 | 0.0006 | 0.042 |
1-Methyl-5-imidazoleacetate | Unknown | Unknown | NA | −0.94 ± 0.27 | 0.0006 | 0.042 |
Glucuronide of C10H18O2 (7) | Unknown | Unknown | NA | −0.08 ± 0.02 | 0.0007 | 0.042 |
X–12726 | Unknown | Unknown | NA | 0.23 ± 0.05 | 1.45 × 10−5 | 0.007 |
X–12818 | Unknown | Unknown | NA | −0.11 ± 0.03 | 0.0003 | 0.042 |
Metabolite Name | Estimate ± SE | p-Value | FDR |
---|---|---|---|
Sphingosine-1-phosphate | 0.19 ± 0.06 | 0.002 | 0.02 |
Caprate (10:0) | 0.18 ± 0.05 | 0.0002 | 0.003 |
Gamma-glutamylglutamine | −0.11 ± 0.03 | 6.59 × 10−5 | 0.002 |
Malate | 0.21 ± 0.06 | 0.0009 | 0.01 |
3-Hydroxybutyrylcarnitine (1) | 0.10 ± 0.02 | 3.99 × 10−6 | 0.0001 |
Cortisol | 0.11 ± 0.04 | 0.003 | 0.02 |
1-Palmitoyl-GPE (16:0) | 0.12 ± 0.04 | 0.004 | 0.02 |
1-Palmitoleoyl-GPC (16:1) * | 0.13 ± 0.04 | 0.002 | 0.02 |
X–11564 | 0.21 ± 0.07 | 0.004 | 0.02 |
Metabolite | Metoprolol SBP Response | Metoprolol DBP Response | ||
---|---|---|---|---|
Estimate ± SE | p-Value | Estimate ± SE | p-Value | |
Caprate | −1.7 ± 0.6 | 0.006 | −0.7 ± 0.4 | 0.05 |
HCTZ SBP response | HCTZ DBP response | |||
Estimate ± SE | p-value | Estimate ± SE | p-value | |
Sphingosine-1-phosphate | 7.6 ± 2.8 | 0.007 | 4.1 ± 1.7 | 0.018 |
1-Palmitoleoyl-GPC (16:1) * | 4.1 ± 2.0 | 0.038 | 1.1 ± 1.2 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehanna, M.; McDonough, C.W.; Smith, S.M.; Gong, Y.; Gums, J.G.; Chapman, A.B.; Johnson, J.A.; McIntyre, L.; Cooper-DeHoff, R.M. Metabolomics Signature of Plasma Renin Activity and Linkage with Blood Pressure Response to Beta Blockers and Thiazide Diuretics in Hypertensive European American Patients. Metabolites 2021, 11, 645. https://doi.org/10.3390/metabo11090645
Mehanna M, McDonough CW, Smith SM, Gong Y, Gums JG, Chapman AB, Johnson JA, McIntyre L, Cooper-DeHoff RM. Metabolomics Signature of Plasma Renin Activity and Linkage with Blood Pressure Response to Beta Blockers and Thiazide Diuretics in Hypertensive European American Patients. Metabolites. 2021; 11(9):645. https://doi.org/10.3390/metabo11090645
Chicago/Turabian StyleMehanna, Mai, Caitrin W. McDonough, Steven M. Smith, Yan Gong, John G. Gums, Arlene B. Chapman, Julie A. Johnson, Lauren McIntyre, and Rhonda M. Cooper-DeHoff. 2021. "Metabolomics Signature of Plasma Renin Activity and Linkage with Blood Pressure Response to Beta Blockers and Thiazide Diuretics in Hypertensive European American Patients" Metabolites 11, no. 9: 645. https://doi.org/10.3390/metabo11090645
APA StyleMehanna, M., McDonough, C. W., Smith, S. M., Gong, Y., Gums, J. G., Chapman, A. B., Johnson, J. A., McIntyre, L., & Cooper-DeHoff, R. M. (2021). Metabolomics Signature of Plasma Renin Activity and Linkage with Blood Pressure Response to Beta Blockers and Thiazide Diuretics in Hypertensive European American Patients. Metabolites, 11(9), 645. https://doi.org/10.3390/metabo11090645