Identification of Metabolic Signature Associated with Idiopathic Inflammatory Myopathy Reveals Polyamine Pathway Alteration in Muscle Tissue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Induction of C Protein-Induced Myositis
2.3. Histological Analysis
2.4. Mass Spectrometry-Based Targeted Metabolomics Assay
2.5. Data Processing and Normalization
2.6. Statistical Analysis
2.7. Protein Extraction and Western Blot Analysis
2.8. ELISA
3. Results
3.1. Clinical Characteristics of the Participants
3.2. Metabolic Profiling of Healthy Control, AS and IIM Patients
3.3. Predictive Biomarker and Machine Learning Algorithm Optimization for Distinguishing IIM
3.4. Metabolic Profiling in the C-Protein-Induced Myositis Mouse Model
3.5. Metabolic Pathway Associated with the Muscle of CIM Mice and Expression of ODC-1 and SMOX
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalakas, M.C. Inflammatory Muscle Diseases. N. Engl. J. Med. 2015, 373, 393–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, A.; Meyer, N.; Schaeffer, M.; Gottenberg, J.E.; Geny, B.; Sibilia, J. Incidence and prevalence of inflammatory myopathies: A systematic review. Rheumatology 2015, 54, 50–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohan, A.; Peter, J.B. Polymyositis and dermatomyositis (first of two parts). N. Engl. J. Med. 1975, 292, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Bohan, A.; Peter, J.B. Polymyositis and dermatomyositis (second of two parts). N. Engl. J. Med. 1975, 292, 403–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McHugh, N.J.; Tansley, S.L. Autoantibodies in myositis. Nat. Rev. Rheumatol. 2018, 14, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Betteridge, Z.; Tansley, S.; Shaddick, G.; Chinoy, H.; Cooper, R.; New, R.; Lilleker, J.; Vencovsky, J.; Chazarain, L.; Danko, K. Frequency, mutual exclusivity and clinical associations of myositis autoantibodies in a combined European cohort of idiopathic inflammatory myopathy patients. J. Autoimmun. 2019, 101, 48–55. [Google Scholar] [CrossRef]
- Sugihara, T.; Sekine, C.; Nakae, T.; Kohyama, K.; Harigai, M.; Iwakura, Y.; Matsumoto, Y.; Miyasaka, N.; Kohsaka, H. A new murine model to define the critical pathologic and therapeutic mediators of polymyositis. Arthritis Rheum. 2007, 56, 1304–1314. [Google Scholar] [CrossRef]
- Okiyama, N.; Sugihara, T.; Iwakura, Y.; Yokozeki, H.; Miyasaka, N.; Kohsaka, H. Therapeutic effects of interleukin-6 blockade in a murine model of polymyositis that does not require interleukin-17A. Arthritis Rheum. 2009, 60, 2505–2512. [Google Scholar] [CrossRef]
- Sugihara, T.; Okiyama, N.; Suzuki, M.; Kohyama, K.; Matsumoto, Y.; Miyasaka, N.; Kohsaka, H. Definitive engagement of cytotoxic CD8 T cells in C protein-induced myositis, a murine model of polymyositis. Arthritis Rheum. 2010, 62, 3088–3092. [Google Scholar] [CrossRef]
- Liu, D.; Zuo, X.; Luo, H.; Zhu, H. The altered metabolism profile in pathogenesis of idiopathic inflammatory myopathies. Semin. Arthritis Rheum. 2020, 50, 627–635. [Google Scholar] [CrossRef]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saoi, M.; Britz-McKibbin, P. New Advances in Tissue Metabolomics: A Review. Metabolites 2021, 11, 672. [Google Scholar] [CrossRef] [PubMed]
- Guleria, A.; Kumar, U.; Kumar, D.; Naveen, R.; Anuja, A.K.; Singh, M.K.; Sharma, P.; Agarwal, V.; Misra, R.; Gupta, L. NMR-based serum and muscle metabolomics for diagnosis and activity assessment in idiopathic inflammatory myopathies. Anal. Sci. Adv. 2021, 2, 515–526. [Google Scholar] [CrossRef]
- Tabbaa, M.; Ruz Gomez, T.; Campelj, D.G.; Gregorevic, P.; Hayes, A.; Goodman, C.A. The regulation of polyamine pathway proteins in models of skeletal muscle hypertrophy and atrophy: A potential role for mTORC1. Am. J. Physiol. Cell Physiol. 2021, 320, C987–C999. [Google Scholar] [CrossRef]
- Kaminska, A.M.; Stern, L.Z.; Russell, D.H. Polyamine metabolism in muscle: Differential response to tenotomy and denervation in the soleus and gastrocnemius muscle of adult rats. Exp. Neurol. 1982, 78, 331–339. [Google Scholar] [CrossRef]
- Wu, D.H.; Kaan, H.Y.K.; Zheng, X.X.; Tang, X.H.; He, Y.; Tan, Q.V.; Zhang, N.; Song, H.W. Structural basis of Ornithine Decarboxylase inactivation and accelerated degradation by polyamine sensor Antizyme1. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gobert, A.P.; Al-Greene, N.T.; Singh, K.; Coburn, L.A.; Sierra, J.C.; Verriere, T.G.; Luis, P.B.; Schneider, C.; Asim, M.; Allaman, M.M.; et al. Distinct Immunomodulatory Effects of Spermine Oxidase in Colitis Induced by Epithelial Injury or Infection. Front. Immunol. 2018, 9, 1242. [Google Scholar] [CrossRef]
- Mann, G.; Mora, S.; Madu, G.; Adegoke, O.A.J. Branched-chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-body Metabolism. Front. Physiol. 2021, 12, 702826. [Google Scholar] [CrossRef]
- Holecek, M. The role of skeletal muscle in the pathogenesis of altered concentrations of branched-chain amino acids (valine, leucine, and isoleucine) in liver cirrhosis, diabetes, and other diseases. Physiol. Res. 2021, 70, 293–305. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, S.; Zhang, C.; Zhao, Y. Coordinated Modulation of Energy Metabolism and Inflammation by Branched-Chain Amino Acids and Fatty Acids. Front. Endocrinol. 2020, 11, 617. [Google Scholar] [CrossRef]
- Cabreiro, F.; Picot, C.R.; Friguet, B.; Petropoulos, I. Methionine sulfoxide reductases: Relevance to aging and protection against oxidative stress. Ann. N. Y. Acad. Sci. 2006, 1067, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Moskovitz, J. Methionine sulfoxide reductases: Ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. Biochim. Biophys. Acta 2005, 1703, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Kodera, Y.; Saito, T.; Fujimoto, K.; Momozono, A.; Hayashi, A.; Kamata, Y.; Shichiri, M. Methionine sulfoxides in serum proteins as potential clinical biomarkers of oxidative stress. Sci. Rep. 2016, 6, 38299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, F.L.; Lustgarten, M.S.; Jang, Y.; Richardson, A.; Van Remmen, H. Trends in oxidative aging theories. Free. Radic. Biol. Med. 2007, 43, 477–503. [Google Scholar] [CrossRef]
- van der Veen, J.N.; Kennelly, J.P.; Wan, S.; Vance, J.E.; Vance, D.E.; Jacobs, R.L. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta Biomembr. 2017, 1859, 1558–1572. [Google Scholar] [CrossRef]
- Raouf, J.; Idborg, H.; Englund, P.; Alexanderson, H.; Dastmalchi, M.; Jakobsson, P.J.; Lundberg, I.E.; Korotkova, M. Targeted lipidomics analysis identified altered serum lipid profiles in patients with polymyositis and dermatomyositis. Arthritis Res. Ther. 2018, 20, 83. [Google Scholar] [CrossRef] [Green Version]
- Dabaj, I.; Ferey, J.; Marguet, F.; Gilard, V.; Basset, C.; Bahri, Y.; Brehin, A.C.; Vanhulle, C.; Leturcq, F.; Marret, S.; et al. Muscle metabolic remodelling patterns in Duchenne muscular dystrophy revealed by ultra-high-resolution mass spectrometry imaging. Sci. Rep. 2021, 11, 1906. [Google Scholar] [CrossRef]
- Tran, A.; Walsh, C.J.; Batt, J.; Dos Santos, C.C.; Hu, P. A machine learning-based clinical tool for diagnosing myopathy using multi-cohort microarray expression profiles. J. Transl. Med. 2020, 18, 454. [Google Scholar] [CrossRef]
- Zhao, L.; Xie, S.; Zhou, B.; Shen, C.; Li, L.; Pi, W.; Gong, Z.; Zhao, J.; Peng, Q.; Zhou, J.; et al. Machine Learning Algorithms Identify Clinical Subtypes and Cancer in Anti-TIF1gamma+ Myositis: A Longitudinal Study of 87 Patients. Front. Immunol. 2022, 13, 802499. [Google Scholar] [CrossRef]
- Mahajan, U.V.; Varma, V.R.; Griswold, M.E.; Blackshear, C.T.; An, Y.; Oommen, A.M.; Varma, S.; Troncoso, J.C.; Pletnikova, O.; O’Brien, R.; et al. Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: A targeted metabolomic and transcriptomic study. PLoS Med. 2020, 17, e1003012. [Google Scholar] [CrossRef]
- Park, M.H.; Igarashi, K. Polyamines and Their Metabolites as Diagnostic Markers of Human Diseases. Biomol. Ther. 2013, 21, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervelli, M.; Leonetti, A.; Duranti, G.; Sabatini, S.; Ceci, R.; Mariottini, P. Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine. Med. Sci. 2018, 6, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bongers, K.S.; Fox, D.K.; Kunkel, S.D.; Stebounova, L.V.; Murry, D.J.; Pufall, M.A.; Ebert, S.M.; Dyle, M.C.; Bullard, S.A.; Dierdorff, J.M.; et al. Spermine oxidase maintains basal skeletal muscle gene expression and fiber size and is strongly repressed by conditions that cause skeletal muscle atrophy. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E144–E158. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, T.; Knauer, H.; Schauer, A.; Buttner, S.; Ruckenstuhl, C.; Carmona-Gutierrez, D.; Ring, J.; Schroeder, S.; Magnes, C.; Antonacci, L.; et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 2009, 11, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Uchitomi, R.; Hatazawa, Y.; Senoo, N.; Yoshioka, K.; Fujita, M.; Shimizu, T.; Miura, S.; Ono, Y.; Kamei, Y. Metabolomic Analysis of Skeletal Muscle in Aged Mice. Sci. Rep. 2019, 9, 10425. [Google Scholar] [CrossRef] [Green Version]
- Boldyrev, A.A.; Aldini, G.; Derave, W. Physiology and pathophysiology of carnosine. Physiol. Rev. 2013, 93, 1803–1845. [Google Scholar] [CrossRef]
- Cuzzocrea, S.; Genovese, T.; Failla, M.; Vecchio, G.; Fruciano, M.; Mazzon, E.; Di Paola, R.; Muia, C.; La Rosa, C.; Crimi, N.; et al. Protective effect of orally administered carnosine on bleomycin-induced lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2007, 292, L1095–L1104. [Google Scholar] [CrossRef]
- Kubota, M.; Kobayashi, N.; Sugizaki, T.; Shimoda, M.; Kawahara, M.; Tanaka, K.I. Carnosine suppresses neuronal cell death and inflammation induced by 6-hydroxydopamine in an in vitro model of Parkinson’s disease. PLoS ONE 2020, 15, e0240448. [Google Scholar] [CrossRef]
- Holecek, M.; Vodenicarovova, V. Effects of histidine supplementation on amino acid metabolism in rats. Physiol. Res. 2020, 69, 99–111. [Google Scholar] [CrossRef]
- Volpi, E.; Sheffield-Moore, M.; Rasmussen, B.B.; Wolfe, R.R. Basal muscle amino acid kinetics and protein synthesis in healthy young and older men. JAMA 2001, 286, 1206–1212. [Google Scholar] [CrossRef]
- Moro, T.; Ebert, S.M.; Adams, C.M.; Rasmussen, B.B. Amino Acid Sensing in Skeletal Muscle. Trends Endocrinol. Metab. 2016, 27, 796–806. [Google Scholar] [CrossRef] [PubMed]
IIM (n = 50) | AS (n = 30) | Control (n = 10) | p-Value | |
---|---|---|---|---|
Age (year) * | 50.7 ± 12.2 | 52.5 ± 11.4 | 45.0 ± 15.0 | 0.249 |
Male | 25 (50.0) | 15 (50.0) | 5 (50.0) | 1.000 |
BMI (kg/m2) | 23.5 ± 3.4 | 22.8 ± 2.8 | 25.0 ± 2.2 | 0.376 |
Age at disease onset (year) | 48.4 ± 12.4 | |||
Disease duration (year) | 2.24 ± 2.74 | |||
Clinical features at disease onset (n) | ||||
Proximal muscle weakness | 34 (68.0) | |||
Skin manifestations † | 30 (60.0) | |||
Interstitial lung disease | 27 (55.1) | |||
Elevated serum level of enzymes ‡ | 46 (92.0) | |||
Anti-Jo1 antibody present | 6 (12.2) | |||
Laboratory data * | ||||
WBC (×103/μL) | 8445 ± 5095 | |||
Creatinine kinase (U/L) | 532 ± 934 | |||
Aldolase (U/L) | 19.1 ± 23.2 | |||
Myoglobin (ng/mL) | 694 ± 885 | |||
LDH (IU/L) | 329 ± 179 | |||
C-reactive protein (mg/dL) | 1.44 ± 3.59 | |||
ESR (mm/h) | 30.5 ± 28.1 | |||
Treatment history § | ||||
Corticosteroids (ever) | 41 (82.0) | |||
IVIG (ever) | 4 (8.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.; Kim, J.Y.; Jung, Y.; Kim, S.U.; Lee, E.Y.; Cho, J.-Y. Identification of Metabolic Signature Associated with Idiopathic Inflammatory Myopathy Reveals Polyamine Pathway Alteration in Muscle Tissue. Metabolites 2022, 12, 1004. https://doi.org/10.3390/metabo12101004
Kang J, Kim JY, Jung Y, Kim SU, Lee EY, Cho J-Y. Identification of Metabolic Signature Associated with Idiopathic Inflammatory Myopathy Reveals Polyamine Pathway Alteration in Muscle Tissue. Metabolites. 2022; 12(10):1004. https://doi.org/10.3390/metabo12101004
Chicago/Turabian StyleKang, Jihyun, Jeong Yeon Kim, Youjin Jung, Seon Uk Kim, Eun Young Lee, and Joo-Youn Cho. 2022. "Identification of Metabolic Signature Associated with Idiopathic Inflammatory Myopathy Reveals Polyamine Pathway Alteration in Muscle Tissue" Metabolites 12, no. 10: 1004. https://doi.org/10.3390/metabo12101004
APA StyleKang, J., Kim, J. Y., Jung, Y., Kim, S. U., Lee, E. Y., & Cho, J. -Y. (2022). Identification of Metabolic Signature Associated with Idiopathic Inflammatory Myopathy Reveals Polyamine Pathway Alteration in Muscle Tissue. Metabolites, 12(10), 1004. https://doi.org/10.3390/metabo12101004